Galois Field Arithmetic Operations using Xilinx FPGAs in Cryptography
Cryptography algorithms are standards for any security-based industry. Internationally widely accepted and used cryptography algorithms like AES, DES rely heavily on finite field arithmetic which needs to be performed efficiently, to meet execution speed and design constraints. This paper aims to pr...
        Saved in:
      
    
          | Published in | 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) pp. 1 - 6 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        21.04.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/IEMTRONICS52119.2021.9422551 | 
Cover
| Abstract | Cryptography algorithms are standards for any security-based industry. Internationally widely accepted and used cryptography algorithms like AES, DES rely heavily on finite field arithmetic which needs to be performed efficiently, to meet execution speed and design constraints. This paper aims to provide a concise perspective on designing efficient architectures in finite field arithmetic. In this paper, we propose Galois field arithmetic using irreducible polynomial to generate the S-box for AES using 128, 192, and 256-bit Keys. Cryptographic algorithms are more prone to side-channel attacks, so we implemented this algorithm instead of using a lookup table-based approach. The proposed Galois Field implementation of arithmetic operations are unique which can be extended to any primitive polynomial of any word size GF(2 n ). A novel scheme is proposed for AES S-box, Inverse S-box, and validated using a Xilinx Virtex-7 FPGA. | 
    
|---|---|
| AbstractList | Cryptography algorithms are standards for any security-based industry. Internationally widely accepted and used cryptography algorithms like AES, DES rely heavily on finite field arithmetic which needs to be performed efficiently, to meet execution speed and design constraints. This paper aims to provide a concise perspective on designing efficient architectures in finite field arithmetic. In this paper, we propose Galois field arithmetic using irreducible polynomial to generate the S-box for AES using 128, 192, and 256-bit Keys. Cryptographic algorithms are more prone to side-channel attacks, so we implemented this algorithm instead of using a lookup table-based approach. The proposed Galois Field implementation of arithmetic operations are unique which can be extended to any primitive polynomial of any word size GF(2 n ). A novel scheme is proposed for AES S-box, Inverse S-box, and validated using a Xilinx Virtex-7 FPGA. | 
    
| Author | Balupala, Hari Krishna Rahul, Kumar Yachareni, Santosh  | 
    
| Author_xml | – sequence: 1 givenname: Hari Krishna surname: Balupala fullname: Balupala, Hari Krishna email: krishnab@xilinx.com organization: Xilinx India Pvt. Limited,Hyderabad,India – sequence: 2 givenname: Kumar surname: Rahul fullname: Rahul, Kumar email: kumarr@xilinx.com organization: Xilinx India Pvt. Limited,Hyderabad,India – sequence: 3 givenname: Santosh surname: Yachareni fullname: Yachareni, Santosh email: santoshy@xilinx.com organization: Xilinx India Pvt. Limited,Hyderabad,India  | 
    
| BookMark | eNotzzFPg0AYgOEz0cFWf4HLDa7gfXfcASMhgCRVjNbErfmAj_YSehDARP59Bzu925O8G3brBkeMPYPwAUT8UmZv-8_qvUy_tASIfSkk-HEgpdZwwzZgjA4CYcLonmUF9oOdeW6pb3ky2eV0psU2vBppwsUObua_s3VH_mN76_54_lEkM7eOp9M6LsNxwvG0PrC7DvuZHq_dsu8826ev3q4qyjTZeVYKtXjQKVBKSoMEjQiNrAlRC90a2UBnsFVomkjHQnVtjBRhKGqqNYAUjdJBp7bs6d-1RHQYJ3vGaT1cz9QFjUNKVQ | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/IEMTRONICS52119.2021.9422551 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 1665440678 9781665440677  | 
    
| EndPage | 6 | 
    
| ExternalDocumentID | 9422551 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i203t-1f3133226ae1c0762beaa505d62c1f6ad3a6c85903fd9ae8a70beb51120c354f3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jun 29 18:39:09 EDT 2023 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i203t-1f3133226ae1c0762beaa505d62c1f6ad3a6c85903fd9ae8a70beb51120c354f3 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_9422551 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-April-21 | 
    
| PublicationDateYYYYMMDD | 2021-04-21 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-April-21 day: 21  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) | 
    
| PublicationTitleAbbrev | IEMTRONICS | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 1.7584218 | 
    
| Snippet | Cryptography algorithms are standards for any security-based industry. Internationally widely accepted and used cryptography algorithms like AES, DES rely... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Advanced Encryption Standard (AES) Affine-transformation Conferences Data Encryption Standard (DES) Encryption Extended Euclidean Algorithm (EEA) Field Programmable Gate Array (FPGA) Galois field (GF) Galois fields Greatest Common Divisor (GCD) Industries Inverse Substitution Logic gates Mechatronics Side-channel attacks Substitution Box (S-box)  | 
    
| Title | Galois Field Arithmetic Operations using Xilinx FPGAs in Cryptography | 
    
| URI | https://ieeexplore.ieee.org/document/9422551 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Qg_GkRozf6YGjG-3ajfVICANM-IhCwo203ZsSdRAYifrX224To_HgrWnS9OM1fe_Xvt-vCNWJ2QNNGYMjfM93ONXcEcCVo0NgntCUMmXvOwbDoDfldzN_VkG3Oy4MAOTJZ-DaYv6WHy_11l6VNQQ3u8_ypfeaYVBwtfZRvZTNbPQ7g8n9aNhvP_hWtsxgP4-6ZZMff6fkriM6RIOvTouMkWd3mylXf_zSY_zvqI5Q7Zukh8c793OMKpCeoE5XviwXGxzZxDTcMsj_6dXSFPFoBYWtN9imuj_i2cIEmG84GndbG7xIcXv9vspK_eoamkadSbvnlD8lOAuPsMyhCTNY00RSEqgm5nxTIKWJbeLA0zQJZMxkoENfEJbEQkIom0SBsrEW0cznCTtF1XSZwhnCVsCdiCQ2QExxjysRG4-fSCIMTvJVIM_RiV2C-aoQw5iXs7_4u_oSHVgz2OcXj16harbewrXx4pm6yc33CampnPk | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IJupJDRh_2wNHN7q1HfRICAOUAVFIuJG263RRB4GRqH-97TYxGg_emiZNf7ym733t-74CUEN6DzR4qCxGXWoRRxKLKSIs2VTYZdJxsDD3HcHQ603J7YzOSuBmy4VRSmXJZ8o2xewtP1zIjbkqqzOid5_hS-9QQgjN2Vq7oFYIZ9b7nWByPxr22w_UCJdp9Oc6dtHox-8pmfPwD0Dw1W2eM_Jsb1Jhy49fioz_HdchqH7T9OB464COQEklFdDp8pdFvIa-SU2DLY39n14NURGOliq39hqaZPdHOIt1iPkG_XG3tYZxAtur92VaKFhXwdTvTNo9q_grwYpdhFPLibBGmzqW4sqRSJ9wQnGuo5vQc6UTeTzE3JNNyhCOQsZVkzeQUMJEW0hiSiJ8DMrJIlEnABoJd8SiUEMxQVwiWKh9fsQR00iJCo-fgopZgvkyl8OYF7M_-7v6Guz1JsFgPugP787BvjGJeYxxnQtQTlcbdal9eiquMlN-AhOyoEY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+IOT%2C+Electronics+and+Mechatronics+Conference+%28IEMTRONICS%29&rft.atitle=Galois+Field+Arithmetic+Operations+using+Xilinx+FPGAs+in+Cryptography&rft.au=Balupala%2C+Hari+Krishna&rft.au=Rahul%2C+Kumar&rft.au=Yachareni%2C+Santosh&rft.date=2021-04-21&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIEMTRONICS52119.2021.9422551&rft.externalDocID=9422551 |