Theoretical and Experimental Investigation of an Efficient SVD-based Near-lossless Compression Algorithm for Multichannel EEG Signals

In this paper, we investigate performance of a re-cently proposed near-lossless compression algorithm specifically devised for multichannel electroencephalograph (EEG) signals. The algorithm exploits the fact that singular value decomposition (SVD) is usually performed on EEG signals for denoising a...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA) pp. 1 - 6
Main Authors Campobello, Giuseppe, Quercia, Angelica, Gugliandolo, Giovanni, Segreto, Antonino, Tatti, Elisa, Ghilardi, Maria Felice, Crupi, Giovanni, Quartarone, Angelo, Donato, Nicola
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.06.2022
Subjects
Online AccessGet full text
DOI10.1109/MeMeA54994.2022.9856423

Cover

Abstract In this paper, we investigate performance of a re-cently proposed near-lossless compression algorithm specifically devised for multichannel electroencephalograph (EEG) signals. The algorithm exploits the fact that singular value decomposition (SVD) is usually performed on EEG signals for denoising and removing unwanted artifacts and that the same SVD can be used for compression purpose. In this paper, we derived an analytical expression for the expected compression ratio and an upper bound for the maximum distortion introduced by the algorithm after reconstruction. Moreover, performances of the algorithm have been investigated on an extended dataset containing real EEG signals related to subjects performing different sensorimotor tasks. Both analytical and experimental results reported in this paper show that the algorithm is able to attain a compression ratio proportional to the number of EEG channels by achieving a percentage root mean square distortion (PRD) in the order of 0.01 %. In particular, the achieved PRD is very low if compared with other state-of-the-art compression algorithms with similar complexity. Moreover, the algorithm allows the desired maximum absolute error to be fixed a priori. Therefore, we can consider this algorithm as an efficient tool for reducing the amount of memory necessary to record data and, at the same time, preserving actual clinical information of the signals besides compression.
AbstractList In this paper, we investigate performance of a re-cently proposed near-lossless compression algorithm specifically devised for multichannel electroencephalograph (EEG) signals. The algorithm exploits the fact that singular value decomposition (SVD) is usually performed on EEG signals for denoising and removing unwanted artifacts and that the same SVD can be used for compression purpose. In this paper, we derived an analytical expression for the expected compression ratio and an upper bound for the maximum distortion introduced by the algorithm after reconstruction. Moreover, performances of the algorithm have been investigated on an extended dataset containing real EEG signals related to subjects performing different sensorimotor tasks. Both analytical and experimental results reported in this paper show that the algorithm is able to attain a compression ratio proportional to the number of EEG channels by achieving a percentage root mean square distortion (PRD) in the order of 0.01 %. In particular, the achieved PRD is very low if compared with other state-of-the-art compression algorithms with similar complexity. Moreover, the algorithm allows the desired maximum absolute error to be fixed a priori. Therefore, we can consider this algorithm as an efficient tool for reducing the amount of memory necessary to record data and, at the same time, preserving actual clinical information of the signals besides compression.
Author Campobello, Giuseppe
Tatti, Elisa
Segreto, Antonino
Crupi, Giovanni
Quartarone, Angelo
Ghilardi, Maria Felice
Donato, Nicola
Quercia, Angelica
Gugliandolo, Giovanni
Author_xml – sequence: 1
  givenname: Giuseppe
  surname: Campobello
  fullname: Campobello, Giuseppe
  email: giuseppe.campobello@unime.it
  organization: University of Messina,Department of Engineering,Messina,Italy
– sequence: 2
  givenname: Angelica
  surname: Quercia
  fullname: Quercia, Angelica
  email: angelica.quercia@unime.it
  organization: University of Messina,Department of BIOMORF,Messina,Italy
– sequence: 3
  givenname: Giovanni
  surname: Gugliandolo
  fullname: Gugliandolo, Giovanni
  email: giovanni.gugliandolo@unime.it
  organization: University of Messina,Department of Engineering,Messina,Italy
– sequence: 4
  givenname: Antonino
  surname: Segreto
  fullname: Segreto, Antonino
  email: asegreto@unime.it
  organization: University of Messina,Department of Engineering,Messina,Italy
– sequence: 5
  givenname: Elisa
  surname: Tatti
  fullname: Tatti, Elisa
  email: etatti@ccny.cuny.edu
  organization: CUNY School of Medicine, The City University of New York,New York,United States
– sequence: 6
  givenname: Maria Felice
  surname: Ghilardi
  fullname: Ghilardi, Maria Felice
  email: liceg@med.cuny.edu
  organization: CUNY School of Medicine, The City University of New York,New York,United States
– sequence: 7
  givenname: Giovanni
  surname: Crupi
  fullname: Crupi, Giovanni
  email: crupig@unime.it
  organization: University of Messina,Department of BIOMORF,Messina,Italy
– sequence: 8
  givenname: Angelo
  surname: Quartarone
  fullname: Quartarone, Angelo
  email: angelo.quartarone@unime.it
  organization: University of Messina,Department of BIOMORF,Messina,Italy
– sequence: 9
  givenname: Nicola
  surname: Donato
  fullname: Donato, Nicola
  email: nicola.donato@unime.it
  organization: University of Messina,Department of Engineering,Messina,Italy
BookMark eNotUEFOwzAQNBIcoPQFHPAHUhLbie1jVUKp1MChhWvlxOvWkmtXdkDwAP6NEd3LrGZnd7Rzgy598IDQfVXOqqqUDx10MK-ZlGxGSkJmUtQNI_QCTSUXVdPUTBApxTX62R4gRBjtoBxWXuP26wTRHsGPmVj5T0ij3avRBo-DyQrcGmMHm-d48_5Y9CqBxi-gYuFCSg5SwotwPMXc_O3M3T5EOx6O2ISIuw-XnQ7Ke3C4bZd4Y_deuXSLrkwGmJ5xgt6e2u3iuVi_LleL-bqwpKRjUUkDvJZy4FQ3RBAGUjMGhJWGMgDGGaim7DnX9TAMggpRaw29ykUMh55O0N3_XQsAu1P-U8Xv3Tkc-gsu42KJ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MeMeA54994.2022.9856423
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665482998
1665482990
EndPage 6
ExternalDocumentID 9856423
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-19fe7599c73d62824e9d44e240f34ee474ea60b77d5ccc83885ddebaaaa2f7eb3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:10 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-19fe7599c73d62824e9d44e240f34ee474ea60b77d5ccc83885ddebaaaa2f7eb3
PageCount 6
ParticipantIDs ieee_primary_9856423
PublicationCentury 2000
PublicationDate 2022-June-22
PublicationDateYYYYMMDD 2022-06-22
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-22
  day: 22
PublicationDecade 2020
PublicationTitle 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
PublicationTitleAbbrev MEMEA
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8014804
Snippet In this paper, we investigate performance of a re-cently proposed near-lossless compression algorithm specifically devised for multichannel...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms biomedical signal processing
Distortion
electroencephalo-graph (EEG)
Electroencephalography
Memory management
Near-lossless compression
Noise reduction
Signal processing algorithms
singular value eecomposition (SVD)
Task analysis
Upper bound
Title Theoretical and Experimental Investigation of an Efficient SVD-based Near-lossless Compression Algorithm for Multichannel EEG Signals
URI https://ieeexplore.ieee.org/document/9856423
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEN20PXlS0xq_swePQllYWPbYKLUxoTFpa3pr2N2hNiKYhl68-7_dBWyr8SAnApNAdsm8mWHeG4RuOPGFJxWzAILEokLnrEKZArygBqOVoNX0hngcjGb0ce7PW-h2y4UBgKr5DGxzWv3LV4XcmFJZn4e-Dpe9NmqzMKi5Wk3LFnF4P4YYBibdMaUS17Ub6x9jUyrUGB6i-Pt5dbPIq70phS0_fkkx_veFjlBvx8_DT1vkOUYtyLvoc7rjJOIkVzjaE-_He3oaRY6LVFvgqJKP0Pfx5PneMnim8Fh_-VamkTPTLhAbb1E3yuZ4kC2L9ap8ecM6zsUVcdewhnPIcBQ94MlqaaSYe2g2jKZ3I6sZsmCtXMcrLcJTYD7nknkq0PkXBa4oBQ30qUcBKKOQBI5gTPlSytALQ197RJHow02ZTsVPUCcvcjhFOHCYSImUihip9JQkEIrUJVQwbe4ofoa6ZgkX77WOxqJZvfO_L1-gA7ONpi3LdS9Rp1xv4EoHAKW4rnb-Cx5utnA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEN3UetCTmtb47R48SsvHLgvHRqlVS2PS1vTWsLtDbUQwDb1493-7C9hW40FOBCaBLJt5M8O8Nwhd-RbljpDMAHAjg3CVs3KpC_CcaIyWnBTTG8KB2xuThwmd1ND1igsDAEXzGbT0afEvX2ZiqUtlbd-jKlx2ttA2JYTQkq1VNW1Zpt8OIYSOTnh0scS2W5X9j8EpBW5091D4_cSyXeS1tcx5S3z8EmP87yvto-aaoYefVthzgGqQNtDnaM1KxFEqcbAh3483FDWyFGexssBBISCh7uPh862hEU3igdr7RqKwM1FOEGt_UbbKpriTzLLFPH95wyrSxQV1V_OGU0hwENzh4XymxZibaNwNRjc9oxqzYMxt08kNy4-BUd8XzJGuysAI-JIQUFAfOwSAMAKRa3LGJBVCeI7nUeUTeaQOO2YqGT9E9TRL4Qhh12Q8toSQlhZLj60IPB7bFuFMmZvSP0YNvYTT91JJY1qt3snfly_RTm8U9qf9-8HjKdrVn1Q3adn2GarniyWcq3Ag5xfFLvgC0Z65vQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Symposium+on+Medical+Measurements+and+Applications+%28MeMeA%29&rft.atitle=Theoretical+and+Experimental+Investigation+of+an+Efficient+SVD-based+Near-lossless+Compression+Algorithm+for+Multichannel+EEG+Signals&rft.au=Campobello%2C+Giuseppe&rft.au=Quercia%2C+Angelica&rft.au=Gugliandolo%2C+Giovanni&rft.au=Segreto%2C+Antonino&rft.date=2022-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMeMeA54994.2022.9856423&rft.externalDocID=9856423