Low-Rank Matrix Recovery for Topological Interference Management

Low-rank matrix completion plays an important role in modeling and computational methods for topological interference management (TIM), but in many applications affected by noise, these networks topological information cannot be fully directly observed, and one encounters the problem of recovering t...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Wireless Communications and Signal Processing pp. 860 - 864
Main Authors Jiang, Xue, Zheng, Baoyu, Wang, Lei, Hou, Xiaoyun
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.10.2020
Subjects
Online AccessGet full text
ISSN2472-7628
DOI10.1109/WCSP49889.2020.9299683

Cover

Abstract Low-rank matrix completion plays an important role in modeling and computational methods for topological interference management (TIM), but in many applications affected by noise, these networks topological information cannot be fully directly observed, and one encounters the problem of recovering the topology information matrix given only incomplete observations. To reduce the noise effect and make topological interference management scalable in multi-user wireless networks, we present an algorithmic approach to investigating the achievable degrees-of-freedom (DoF) by recasting the topological interference management problem as a low-rank matrix recovery (LRMR) problem. Furthermore, we propose two TIM algorithms to solve the low-rank matrix recovery problem for partially connected interference channels. One is nuclear norm and l 1- norm minimization TIM algorithm and the other is nuclear norm and Frobenius norm minimization TIM algorithm. Finally, the simulation results show the proposed TIM algorithms to solve the low-rank matrix recovery problem is efficient.
AbstractList Low-rank matrix completion plays an important role in modeling and computational methods for topological interference management (TIM), but in many applications affected by noise, these networks topological information cannot be fully directly observed, and one encounters the problem of recovering the topology information matrix given only incomplete observations. To reduce the noise effect and make topological interference management scalable in multi-user wireless networks, we present an algorithmic approach to investigating the achievable degrees-of-freedom (DoF) by recasting the topological interference management problem as a low-rank matrix recovery (LRMR) problem. Furthermore, we propose two TIM algorithms to solve the low-rank matrix recovery problem for partially connected interference channels. One is nuclear norm and l 1- norm minimization TIM algorithm and the other is nuclear norm and Frobenius norm minimization TIM algorithm. Finally, the simulation results show the proposed TIM algorithms to solve the low-rank matrix recovery problem is efficient.
Author Wang, Lei
Jiang, Xue
Hou, Xiaoyun
Zheng, Baoyu
Author_xml – sequence: 1
  givenname: Xue
  surname: Jiang
  fullname: Jiang, Xue
  email: jiangx@njupt.edu.cn
  organization: Nanjing University of Posts and Telecommunications,School of Internet of Things,Nanjing,China
– sequence: 2
  givenname: Baoyu
  surname: Zheng
  fullname: Zheng, Baoyu
  email: zby@njupt.edu.cn
  organization: Nanjing University of Posts and Telecommunications,College of Telecommunication & Information Engineering,Nanjing,China
– sequence: 3
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  email: wanglei@njupt.edu.cn
  organization: Nanjing University of Posts and Telecommunications,College of Telecommunication & Information Engineering,Nanjing,China
– sequence: 4
  givenname: Xiaoyun
  surname: Hou
  fullname: Hou, Xiaoyun
  email: houxy@njupt.edu.cn
  organization: Nanjing University of Posts and Telecommunications,College of Telecommunication & Information Engineering,Nanjing,China
BookMark eNotj9tKw0AURUdRsK39AkHyA4lzy2TOmxK8FCJKrfhYTqZnSjSdKdOg9u8t2IfNelks2GN2FmIgxq4FL4TgcPNRv71qsBYKySUvQAIYq07YWFTSHqZMecpGUlcyr4y0F2y6231yzoURJUg9YrdN_MnnGL6yZxxS95vNycVvSvvMx5Qt4jb2cd057LNZGCh5ShQcHeSAa9pQGC7Zucd-R9MjJ-z94X5RP-XNy-OsvmvyTnI15EKb1ijnDdcA1iNwZwwiVbz1SmuL2PoVePBalKhBGQOqFKpVUq-cqIyasKv_bkdEy23qNpj2y-Nh9Qfrq0wj
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCSP49889.2020.9299683
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728172365
9781728172361
EISSN 2472-7628
EndPage 864
ExternalDocumentID 9299683
Genre orig-research
GrantInformation_xml – fundername: Nanjing University of Posts and Telecommunications
  funderid: 10.13039/501100005374
– fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: 10.13039/501100004608
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-146b63cf604998fa90c66aae70bf3448aabfd9f9f415a4936693513b324dc1763
IEDL.DBID RIE
IngestDate Wed Aug 27 03:02:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-146b63cf604998fa90c66aae70bf3448aabfd9f9f415a4936693513b324dc1763
PageCount 5
ParticipantIDs ieee_primary_9299683
PublicationCentury 2000
PublicationDate 2020-Oct.-21
PublicationDateYYYYMMDD 2020-10-21
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-21
  day: 21
PublicationDecade 2020
PublicationTitle International Conference on Wireless Communications and Signal Processing
PublicationTitleAbbrev WCSP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001615924
Score 2.124794
Snippet Low-rank matrix completion plays an important role in modeling and computational methods for topological interference management (TIM), but in many...
SourceID ieee
SourceType Publisher
StartPage 860
SubjectTerms Interference
Interference alignment
Interference channels
low-rank matrix recovery
Mathematical model
Matrix decomposition
Minimization
Receivers
sparse and low-rank matrix decomposition
Sparse matrices
topological interference management
Title Low-Rank Matrix Recovery for Topological Interference Management
URI https://ieeexplore.ieee.org/document/9299683
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnfTixyZ-04NH26VNmiU3YTiGOBm64W4jSV9ABp1Ihx9_vUnbbSoevIVC0pIX3i_v9f1-D-BSIM9iTImXvhQhM4SFihIMKbPWAbZGUarzD-_5YMJup-m0AVdrLgwilsVnGPlh-S8_W5ilT5V1HJRLLugWbHUFr7ham3yKg2YXS9Qk4JjIzlPvccSkEJ6OkpConvyji0oJIv1dGK5eX9WOzKNloSPz-UuZ8b_ftwftDV0vGK2BaB8amB_AzjelwRZc3y3ewgeVz4Oh1-R_D3zY6U7xR-AurcG46pTg7RWUKcLVqpvimDZM-jfj3iCsmyeEzwmhReg8oObUWO5jGmGVJIZzpbBLtKUuJlNK20xaaR2CKyYp55KmMdXugpWZ2HmdQ2jmixyPINCCGomppDpLGKpYZloyzQ0ypNJacQwtvxezl0ofY1Zvw8nfj09h29vD-_8kPoNm8brEcwfshb4oLfoFhYCi2g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPagXH634dg8e3W12k43JTSiWqt1StMXeSpJNQApbkS0-fr3J7rZV8eAtBBJCJuTLTOb7BuCCaZqGOkZO-pL5RCHiC4y0j4kxFrClZoU6f9Kn3RG5G8fjGlwuuTBa6yL5TAeuWfzlpzM1d6GyloVyThleg_WYEBKXbK1VRMWCs_UmKhpwiHjrqf04IJwxR0iJUFAN_1FHpYCRzjYkiwWU2SPTYJ7LQH3-0mb87wp3oLki7HmDJRTtQk1ne7D1TWuwAde92Zv_ILKplzhV_nfPOZ72HH949tnqDctaCc5iXhEkXMy6So9pwqhzM2x3_ap8gv8cIZz79g6UFCtDnVfDjOBIUSqEvkLSYOuVCSFNyg03FsMF4ZhSjuMQS_vESlVo7519qGezTB-AJxlWXMccyzQiWoQ8lZxIqjTRmBvDDqHh9mLyUipkTKptOPq7-xw2usOkN-nd9u-PYdPZxqFBFJ5APX-d61ML87k8K6z7BT3Gpic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Wireless+Communications+and+Signal+Processing&rft.atitle=Low-Rank+Matrix+Recovery+for+Topological+Interference+Management&rft.au=Jiang%2C+Xue&rft.au=Zheng%2C+Baoyu&rft.au=Wang%2C+Lei&rft.au=Hou%2C+Xiaoyun&rft.date=2020-10-21&rft.pub=IEEE&rft.eissn=2472-7628&rft.spage=860&rft.epage=864&rft_id=info:doi/10.1109%2FWCSP49889.2020.9299683&rft.externalDocID=9299683