Coarse-to-Fine Q-attention: Efficient Learning for Visual Robotic Manipulation via Discretisation
We present a coarse-to-fine discretisation method that enables the use of discrete reinforcement learning approaches in place of unstable and data-inefficient actorcritic methods in continuous robotics domains. This approach builds on the recently released ARM algorithm, which replaces the continuou...
Saved in:
| Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 13729 - 13738 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.06.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6919 |
| DOI | 10.1109/CVPR52688.2022.01337 |
Cover
| Abstract | We present a coarse-to-fine discretisation method that enables the use of discrete reinforcement learning approaches in place of unstable and data-inefficient actorcritic methods in continuous robotics domains. This approach builds on the recently released ARM algorithm, which replaces the continuous next-best pose agent with a discrete one, with coarse-to-fine Q-attention. Given a voxelised scene, coarse-to-fine Q-attention learns what part of the scene to 'zoom' into. When this 'zooming' behaviour is applied iteratively, it results in a near-lossless discretisation of the translation space, and allows the use of a discrete action, deep Q-learning method. We show that our new coarse-to-fine algorithm achieves state-of-the-art performance on several difficult sparsely rewarded RLBench vision-based robotics tasks, and can train real-world policies, tabula rasa, in a matter of minutes, with as little as 3 demonstrations. |
|---|---|
| AbstractList | We present a coarse-to-fine discretisation method that enables the use of discrete reinforcement learning approaches in place of unstable and data-inefficient actorcritic methods in continuous robotics domains. This approach builds on the recently released ARM algorithm, which replaces the continuous next-best pose agent with a discrete one, with coarse-to-fine Q-attention. Given a voxelised scene, coarse-to-fine Q-attention learns what part of the scene to 'zoom' into. When this 'zooming' behaviour is applied iteratively, it results in a near-lossless discretisation of the translation space, and allows the use of a discrete action, deep Q-learning method. We show that our new coarse-to-fine algorithm achieves state-of-the-art performance on several difficult sparsely rewarded RLBench vision-based robotics tasks, and can train real-world policies, tabula rasa, in a matter of minutes, with as little as 3 demonstrations. |
| Author | Laidlow, Tristan Wada, Kentaro Davison, Andrew J. James, Stephen |
| Author_xml | – sequence: 1 givenname: Stephen surname: James fullname: James, Stephen email: slj12@imperial.ac.uk organization: Dyson Robotics Lab, Imperial College London – sequence: 2 givenname: Kentaro surname: Wada fullname: Wada, Kentaro email: k.wada18@imperial.ac.uk organization: Dyson Robotics Lab, Imperial College London – sequence: 3 givenname: Tristan surname: Laidlow fullname: Laidlow, Tristan email: t.laidlow15@imperial.ac.uk organization: Dyson Robotics Lab, Imperial College London – sequence: 4 givenname: Andrew J. surname: Davison fullname: Davison, Andrew J. email: a.davison@imperial.ac.uk organization: Dyson Robotics Lab, Imperial College London |
| BookMark | eNotj9tKAzEURaMo2NZ-gT7kB6aeJDOZxDcZ6wUqatG-ljMziRypSZmkgn9vvTxt9oK9YI_ZUYjBMXYuYCYE2Itm9bSspDZmJkHKGQil6gM2FlpXpbalVodsJECrQlthT9g0pXcAUFIIbc2IYRNxSK7Isbih4PhzgTm7kCmGSz73njraN75wOAQKb9zHga8o7XDDl7GNmTr-gIG2uw3-bPgnIb-m1A0uU_pFp-zY4ya56X9O2OvN_KW5KxaPt_fN1aIgCSoXQvZeVHXfAmhZla2VtSkBwTppei8FIPZY1bY1ulOVaNX-gEZnvAHhwWg1YWd_XnLOrbcDfeDwtbamNlYa9Q1XvVdF |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52688.2022.01337 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665469463 9781665469463 |
| EISSN | 1063-6919 |
| EndPage | 13738 |
| ExternalDocumentID | 9878928 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-12df157db006254b927840a09e28df210aada579b86c351b31166ae8f801f0863 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:15:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-12df157db006254b927840a09e28df210aada579b86c351b31166ae8f801f0863 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9878928 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-June |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.5764496 |
| Snippet | We present a coarse-to-fine discretisation method that enables the use of discrete reinforcement learning approaches in place of unstable and data-inefficient... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 13729 |
| SubjectTerms | Computer vision Machine vision Pattern recognition Q-learning Robot vision systems Task analysis Vision applications and systems; Others; Robot vision Visualization |
| Title | Coarse-to-Fine Q-attention: Efficient Learning for Visual Robotic Manipulation via Discretisation |
| URI | https://ieeexplore.ieee.org/document/9878928 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkzlo4hveWDEaRInjs1aWlVIRaWiVbfKjm0UgRpEEwZ-PeckLQIxsCVZEp3tvHv2u3cIXQsNGK1UQEJugKDINCJSC0aYoNbaJIhS7Yji5IGN59H9Ml620M2uFsYYU4nPjOcuq7N8nael2yrrAz_mIuRt1E44q2u1dvspFJgME7ypjgt80R8spjNnZuIEXGHoQa5Df_ZQqSBk1EWT7ctr5ciLVxbKSz9_-TL-9-v2Ue-7WA9PdzB0gFpmfYi6TXaJm7W7OUJykAOJNaTIyQhSS_xInLVmJXa8xcPKSQLucGO4-owhm8WLbFPKVzzLVQ4TDE_kOtv2-8IfmcR3Gfx1TNFIgnpoPho-DcakabBAstCnBQlCbYM40W7pAVFUwp1C-tIXJuTaAhmUUss4EYqzlMaBohBiJg23AGsWuBA9Rp11vjYnCCsVR5JJC-hmIiojQYGpaaYCw1kkBT9FRy5iq7faQ2PVBOvs78fnaM-NWS3JukCd4r00lwD-hbqqRv0LGCevcg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_Boka1dab0iBBUIEiDcSLt2ZtFsRoYH_3pfx8BoPHjbduny1u57X_u97yF0JQ1gtNYe8YUFgqJCRpSRnHBJoyhqeiw0jij2B7w7YQ-zYFZC15taGGttLj6zdXeZn-WbNFy6rbIb4MdC-mILbQeMsWBVrbXZUaHAZbgURX2c15A3relw5OxMnITL9-uQ7dCfXVRyEOlUUH89_Eo78lJfZroefv5yZvzv--2h2ne5Hh5ugGgflWxygCpFfomL1buoItVKgcZakqWkA8klfiLOXDOXO97idu4lAXe4sFx9xpDP4mm8WKpXPEp1ClMM91USrzt-4Y9Y4bsY_js2K0RBNTTptMetLilaLJDYb9CMeL6JvKBp3OIDqqilO4dsqIa0vjAR0EGljAqaUgse0sDTFELMlRURAFsEbIgeonKSJvYIYa0DpriKAN8so4pJClzNcO1ZwZmS4hhVXcTmbysXjXkRrJO_H1-ine6435v37gePp2jXfb-VQOsMlbP3pT2HVCDTF_kM-AJ2YbK_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Coarse-to-Fine+Q-attention%3A+Efficient+Learning+for+Visual+Robotic+Manipulation+via+Discretisation&rft.au=James%2C+Stephen&rft.au=Wada%2C+Kentaro&rft.au=Laidlow%2C+Tristan&rft.au=Davison%2C+Andrew+J.&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=13729&rft.epage=13738&rft_id=info:doi/10.1109%2FCVPR52688.2022.01337&rft.externalDocID=9878928 |