A Composite Multivariate Polygenic and Neuroimaging Score for Prediction of Conversion to Alzheimer's Disease

Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) are characterized by widespread pathological changes in the brain. At the same time, Alzheimer's disease is heritable with complex genetic underpinnings that may influence the timing of the related pathological changes in the bra...

Full description

Saved in:
Bibliographic Details
Published in2012 International Workshop on Pattern Recognition in NeuroImaging pp. 105 - 108
Main Authors Filipovych, R., Gaonkar, B., Davatzikos, C.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 2012
Subjects
Online AccessGet full text
ISBN1467321826
9781467321822
ISSN2330-9989
DOI10.1109/PRNI.2012.9

Cover

Abstract Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) are characterized by widespread pathological changes in the brain. At the same time, Alzheimer's disease is heritable with complex genetic underpinnings that may influence the timing of the related pathological changes in the brain and can affect the progression from MCI to AD. In this paper, we present a multivariate imaging genetics approach for prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. We employ multivariate pattern recognition approaches to obtain neuroimaging and polygenic discriminators between the healthy individuals and AD patients. We then design, in a linear manner, a composite imaging-genetic score for prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. We apply our approach within the Alzheimer's Disease Neuroimaging Initiative and show that the integration of polygenic and neuroimaging information improves prediction of conversion to AD.
AbstractList Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) are characterized by widespread pathological changes in the brain. At the same time, Alzheimer's disease is heritable with complex genetic underpinnings that may influence the timing of the related pathological changes in the brain and can affect the progression from MCI to AD. In this paper, we present a multivariate imaging genetics approach for prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. We employ multivariate pattern recognition approaches to obtain neuroimaging and polygenic discriminators between the healthy individuals and AD patients. We then design, in a linear manner, a composite imaging-genetic score for prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. We apply our approach within the Alzheimer's Disease Neuroimaging Initiative and show that the integration of polygenic and neuroimaging information improves prediction of conversion to AD.
Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) are characterized by widespread pathological changes in the brain. At the same time, Alzheimer's disease is heritable with complex genetic underpinnings that may influence the timing of the related pathological changes in the brain and can affect the progression from MCI to AD. In this paper, we present a multivariate imaging genetics approach for prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. We employ multivariate pattern recognition approaches to obtain neuroimaging and polygenic discriminators between the healthy individuals and AD patients. We then design, in a linear manner, a composite imaging-genetic score for prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. We apply our approach within the Alzheimer's Disease Neuroimaging Initiative and show that the integration of polygenic and neuroimaging information improves prediction of conversion to AD.Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) are characterized by widespread pathological changes in the brain. At the same time, Alzheimer's disease is heritable with complex genetic underpinnings that may influence the timing of the related pathological changes in the brain and can affect the progression from MCI to AD. In this paper, we present a multivariate imaging genetics approach for prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. We employ multivariate pattern recognition approaches to obtain neuroimaging and polygenic discriminators between the healthy individuals and AD patients. We then design, in a linear manner, a composite imaging-genetic score for prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. We apply our approach within the Alzheimer's Disease Neuroimaging Initiative and show that the integration of polygenic and neuroimaging information improves prediction of conversion to AD.
Author Davatzikos, C.
Gaonkar, B.
Filipovych, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Filipovych
  fullname: Filipovych, R.
  email: roman.filipovych@uphs.upenn.edu
  organization: Sect. of Biomed. Image Anal., Univ. of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: B.
  surname: Gaonkar
  fullname: Gaonkar, B.
  organization: Sect. of Biomed. Image Anal., Univ. of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: C.
  surname: Davatzikos
  fullname: Davatzikos, C.
  organization: Sect. of Biomed. Image Anal., Univ. of Pennsylvania, Philadelphia, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24899230$$D View this record in MEDLINE/PubMed
BookMark eNpVUMtu2zAQZNEUzaM-9Rig4K292OFLpPZSwHAfCZCkRh9ngaJWDgOJdEnJQPL1lZEH0r0sZmcwg51jchBiQELec7bgnMHZ-uf1xUIwLhbwiszAlMxoKJTRhXlNjrnSRgpeCn1AjoSUbA5QwiGZ5XzLpjElF4K_JYdClQBCsiPSL-kq9tuY_YD0auwGv7PJ2wmsY3e3weAdtaGh1zim6Hu78WFDf7mYkLYx0XXCxrvBx0BjOzmFHaa8R0Oky-7-Bn2P6WOmX3xGm_EdedPaLuPscZ-QP9--_l6dzy9_fL9YLS_nfvptmDstGgDlrJR1LSWYxjXAytLVwJvW6roA51rTFo0TjtkW1XRuJZdcWy5UIU_I5wff7Vj32DgMQ7JdtU3TB-muitZX_zPB31SbuKsUU9zA3uDTo0GKf0fMQ9X77LDrbMA45mrfcQFK6b30w8us55CnjifB6YPAI-IzrQUUwLj8B43FjvE
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
Copyright 2012 IEEE 2012
Copyright_xml – notice: 2012 IEEE 2012
DBID 6IE
6IL
CBEJK
RIE
RIL
NPM
7X8
5PM
DOI 10.1109/PRNI.2012.9
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISBN 9780769547657
0769547656
EndPage 108
ExternalDocumentID PMC4041795
24899230
6295901
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: HHSN271201300284P
– fundername: NIA NIH HHS
  grantid: R01 AG014971
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ABLEC
ADZIZ
CHZPO
IPLJI
NPM
7X8
5PM
ID FETCH-LOGICAL-i201t-c62d994ca33bb3397dcd9088cb91dfa6b59ccf7f5dc2c0afe41dff31316a12453
IEDL.DBID RIE
ISBN 1467321826
9781467321822
ISSN 2330-9989
IngestDate Thu Aug 21 14:14:02 EDT 2025
Thu Jul 10 22:35:42 EDT 2025
Sat Nov 02 12:23:57 EDT 2024
Wed Aug 27 05:08:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords pattern classification
mild cognitive impairment
imaging genetics
Alzheimer's disease
multivariate analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i201t-c62d994ca33bb3397dcd9088cb91dfa6b59ccf7f5dc2c0afe41dff31316a12453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24899230
PQID 1826594465
PQPubID 23479
PageCount 4
ParticipantIDs ieee_primary_6295901
pubmed_primary_24899230
proquest_miscellaneous_1826594465
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4041795
PublicationCentury 2000
PublicationDate 2012-00-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012-00-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2012 International Workshop on Pattern Recognition in NeuroImaging
PublicationTitleAbbrev prni
PublicationTitleAlternate Int Workshop Pattern Recognit Neuroimaging
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000781221
ssj0003177720
Score 1.5374563
Snippet Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) are characterized by widespread pathological changes in the brain. At the same time, Alzheimer's...
SourceID pubmedcentral
proquest
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 105
SubjectTerms Accuracy
Alzheimer's disease
Genetics
Imaging
imaging genetics
mild cognitive impairment
multivariate analysis
Neuroimaging
pattern classification
Sociology
Title A Composite Multivariate Polygenic and Neuroimaging Score for Prediction of Conversion to Alzheimer's Disease
URI https://ieeexplore.ieee.org/document/6295901
https://www.ncbi.nlm.nih.gov/pubmed/24899230
https://www.proquest.com/docview/1826594465
https://pubmed.ncbi.nlm.nih.gov/PMC4041795
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp55aBLRbHjISEpdmie0kXh8RDwESaNUWidvK8UNEZRME2ZXYX89Mkk0L4tBbnpbjGcfjmfm-AThQOTdW-CQysXRRwkc-0k7hxKMFVoc4DjFhh69vsovb5OouvVuBHz0WxnvfJJ_5IR02sXxX2Rm5yo4yoQkquQqrSukWq9X7U4i0RgjeYLcyJYmYPFtSOnXnosPn8VgfjX_eXFJilxjqrq7KRybm-0zJf5ae889wvex0m3HyZzir86FdvONz_N-v-gKbf0F-bNwvX-uw4ssNmB4z-kNQJpdnDTh3jptptEfZuHp4QWUrLDOlYw2nRzFtShyxX0SFydD6xfYo7kOyZlXAlsp5645jdcWOHxb3vpj6p8NndtqGhTbh9vzs98lF1FVkiAocqzqymXBaJ9ZImecSTRlnHSVK2VxzF0yWp9raoELqrLCxCT7By0FyyTODhkQqt2CtrEr_DZhDjUidVmjy2cR4oZUZea6wvYyPgjQD2KChmjy2pBuTbpQGsL-U0gQnAkU3TOmr2fOEBJ5q4n8bwNdWav3LIsFtJW62BqDeyLN_gEi2394pi_uGbDuJqUZb-v3j7mzDJ1Ki1iezA2v108zvopVS53uNer4CG9_nJQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoBTi1pgoYCRkLiQbWwn8fpYAdUWuqsVtFJvkeOHGtFNqjZbif56ZpJsoFUP3PK0HM84nvHM9w3AB1VwY4VPIhNLFyV84iPtFE48WmB1iOMQE3Z4Ns-mp8m3s_RsAz4NWBjvfZt85sd02MbyXW1XtFW2nwlNUMlH8DhFr0J1aK1hR4Voa4TgLXorU5KoybM1qVN_LnqEHo_1_uLH_IhSu8RY95VVHjIy7-dK_rP4HG7BbN3tLufk13jVFGN7e4_R8X-_axt2_8L82GJYwJ7Bhq92YHnA6B9BuVyetfDcG3Sn0SJli_riN6pbaZmpHGtZPcplW-SI_SQyTIb2L7ZHkR-SNqsDtlTddBtyrKnZwcXtuS-X_urjNfvSBYZ24fTw68nnadTXZIhKHKsmsplwWifWSFkUEo0ZZx2lStlCcxdMVqTa2qBC6qywsQk-wctBcskzg6ZEKp_DZlVX_iUwhzqROq3Q6LOJ8UIrM_FcYXsZnwRpRrBDQ5VfdrQbeT9KI3i_llKOU4HiG6by9eo6J4GnmhjgRvCik9rwskjQsUR3awTqjjyHB4hm--6dqjxv6baTmKq0pa8e7s47eDI9mR3nx0fz76_hKSlUt0OzB5vN1cq_QZulKd62qvoHYgrqdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+International+Workshop+on+Pattern+Recognition+in+NeuroImaging&rft.atitle=A+Composite+Multivariate+Polygenic+and+Neuroimaging+Score+for+Prediction+of+Conversion+to+Alzheimer%27s+Disease&rft.au=Filipovych%2C+R.&rft.au=Gaonkar%2C+B.&rft.au=Davatzikos%2C+C.&rft.date=2012-01-01&rft.pub=IEEE&rft.isbn=9781467321822&rft.spage=105&rft.epage=108&rft_id=info:doi/10.1109%2FPRNI.2012.9&rft.externalDocID=6295901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2330-9989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2330-9989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2330-9989&client=summon