Fault tolerance of feed-forward artificial neural network architectures targeting nano-scale implementations

Several circuit architectures have been proposed to overcome logic faults due to the high defect densities that are expected to be encountered in the first generations of nanoelectronic systems. How feed-forward artificial neural networks can possibly be exploited for the purpose of conceiving highl...

Full description

Saved in:
Bibliographic Details
Published in2007 50th Midwest Symposium on Circuits and Systems pp. 779 - 782
Main Authors Vural, M., Ozgur, A., Schmid, A., Leblebici, Y.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2007
Subjects
Online AccessGet full text
ISBN1424411750
9781424411757
ISSN1548-3746
1558-3899
DOI10.1109/MWSCAS.2007.4488693

Cover

Abstract Several circuit architectures have been proposed to overcome logic faults due to the high defect densities that are expected to be encountered in the first generations of nanoelectronic systems. How feed-forward artificial neural networks can possibly be exploited for the purpose of conceiving highly reliable Boolean gates is the topic of this paper. Computer simulations show that feed-forward artificial neural networks can be trained to absorb faults while implementing Boolean functions of various complexity. Using this approach, it can be shown that very high device failure rates (up to 20%) can be accommodated. The cost is to be paid in terms of hardware overhead, which is comparable to the area cost of conventional hardware redundancy measures.
AbstractList Several circuit architectures have been proposed to overcome logic faults due to the high defect densities that are expected to be encountered in the first generations of nanoelectronic systems. How feed-forward artificial neural networks can possibly be exploited for the purpose of conceiving highly reliable Boolean gates is the topic of this paper. Computer simulations show that feed-forward artificial neural networks can be trained to absorb faults while implementing Boolean functions of various complexity. Using this approach, it can be shown that very high device failure rates (up to 20%) can be accommodated. The cost is to be paid in terms of hardware overhead, which is comparable to the area cost of conventional hardware redundancy measures.
Author Leblebici, Y.
Vural, M.
Ozgur, A.
Schmid, A.
Author_xml – sequence: 1
  givenname: M.
  surname: Vural
  fullname: Vural, M.
  organization: Swiss Fed. Inst. of Technol. EPFL, Lausanne
– sequence: 2
  givenname: A.
  surname: Ozgur
  fullname: Ozgur, A.
  organization: Swiss Fed. Inst. of Technol. EPFL, Lausanne
– sequence: 3
  givenname: A.
  surname: Schmid
  fullname: Schmid, A.
  organization: Swiss Fed. Inst. of Technol. EPFL, Lausanne
– sequence: 4
  givenname: Y.
  surname: Leblebici
  fullname: Leblebici, Y.
  organization: Swiss Fed. Inst. of Technol. EPFL, Lausanne
BookMark eNpFkNFOwjAUhmvERECfgJu-wLDtuna7JETUBOMFGi-Xs-0Mq11Hui4Lby8I6tWfkz_fn5NvQkaudUjIjLM55yy7e37fLBebuWBMz6VMU5XFF2TCpZCSc62yy_8jYSMy5olMo1hLdU0mXffJmIg1z8bErqC3gYbWogdXIm1rWiNWUd36AXxFwQdTm9KApQ57_xNhaP3XoSk_TMAy9B47GsBvMRi3pQ5cG3UlWKSm2Vls0AUIpnXdDbmqwXZ4e84peVvdvy4fo_XLw9NysY6MYDyOslSJAmXNQEmRQsGSGErGUBVaKwSuSlUBqxJdFByVrgXnmag0qyoGAgodT4k87fZuB_sBrM133jTg9zln-dFf3gyHD7v86C8_-ztgsxNmEPGP-G2_AYP6cD0
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
ADTOC
UNPAY
DOI 10.1109/MWSCAS.2007.4488693
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1424411769
9781424411764
EndPage 782
ExternalDocumentID oai:infoscience.tind.io:115097
4488693
Genre orig-research
GroupedDBID 29B
29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ADTOC
UNPAY
ID FETCH-LOGICAL-i2013-9862be4f0a6428ab053ac00e6b776ea16c6da0d57bb1e67f21192d70dd0a2ab73
IEDL.DBID UNPAY
ISBN 1424411750
9781424411757
ISSN 1548-3746
1558-3899
IngestDate Tue Aug 19 21:13:52 EDT 2025
Wed Aug 27 01:44:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i2013-9862be4f0a6428ab053ac00e6b776ea16c6da0d57bb1e67f21192d70dd0a2ab73
OpenAccessLink https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/115097
PageCount 4
ParticipantIDs ieee_primary_4488693
unpaywall_primary_10_1109_mwscas_2007_4488693
PublicationCentury 2000
PublicationDate 2007-08
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-08
PublicationDecade 2000
PublicationTitle 2007 50th Midwest Symposium on Circuits and Systems
PublicationTitleAbbrev MWSCAS
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023719
ssj0000454236
Score 1.7257684
Snippet Several circuit architectures have been proposed to overcome logic faults due to the high defect densities that are expected to be encountered in the first...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 779
SubjectTerms Artificial neural networks
Boolean functions
Circuit faults
Computer network reliability
Computer simulation
Costs
Fault tolerance
Feedforward systems
Hardware
Logic circuits
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9ML-rFj038JgePZkv6kaRHGQ4RJoKKu42kSUGsrbgW0b_eJO3qEA-e2tKQNq8vTV7ye78fwLlhWRhpGmAqdIAjLjQWklNMA6pTYUdk6XdMp7fs-jG6mcWzHlx0uTDGGA8-M0N36vfydZnWbqlsZEMJwZJwDda4YE2uVree4qjkvHZ3G2yF3It6uBm57UQRWyZ1OWrKjuupveYtHRElyWj6dD--vG-4DdvntcIrW7BRF2_y80Pm-coYNNmG6fLtG-jJy7Cu1DD9-kXs-N_m7cDgJ9sP3XXj2C70TLEHWytEhX3IJ7LOK1SVuXFCHAaVGcpseWynvA52i5wDNlwUyDFk-oPHl6PVnYoFaoDntk5UyKLEC-shBj2_LkHsvhMM4HFy9TC-xq1OA34OnDhEYqMiZaKMSBfMSGX7tUwJMUxxzoykLGVaEh1zpahhPHOkcoHmRGsiA6l4uA_rRVmYA0BCKCXtPyE2mbUGkUksHLtQKFWYxhmnh9B3dpu_NVQc89Zkh4C7T9Pd8-ENSeavH7YxC6e3yZflj_6u5hg2m6Vbh-87gfXqvTands5RqTPvbN_5-s_-
  priority: 102
  providerName: IEEE
Title Fault tolerance of feed-forward artificial neural network architectures targeting nano-scale implementations
URI https://ieeexplore.ieee.org/document/4488693
http://infoscience.epfl.ch/record/115097
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HXQXPzZxfowcvGYm_UjSo4hjCI4dHMzTSJoUh107XMvQv94k7T7Ag3hqoSGUvJfkvbxffj8A7jRN_EARDxGuPBQwrhAXjCDiERVzsyMLVzF9GdHhJHiehtPdeYcd1XrpN8txkvbj9402mg1dInYImjQ0UXcDNCej8cObo0MNuJkn1UWiMDTvJoeoCYYIju4X65WVD3NshSYZ4dQWmZ2USgscldlSfK1Fmu7tKoOTiuJo5cgILZjko18Wsh9__6Zq_POHT0Fnd3cPjre70hk40Nk5aO3RDrZBOhBlWsAiT7WV1dAwT2Bi2iMTwFoQLbTuVDFLQMt36R4OLQ736w4rWMHITZ8wE1mOzACkGs4XG0i6c-kOmAyeXh-HqFZdQHPPSj1EJseROkiwsKmJkGaWihhjTSVjVAtCY6oEViGTkmjKEksR5ymGlcLCE5L5F6CR5Zm-BJBzKYWZ4aFOzMBjEYXccgX5QvpxmDDSBW1rhtmyItaY1dbpArQ1y_abS1ZwNKusadUz2ab91T_bX4Pj6oTWwvhuQKP4LPWtCS0K2XP3_3q1b_0AlIXPeA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHAoXdrHjA0fc2lns5IgQVVmKkCiit8qOHQkREkQTIfh6bCcNFeLAKYliOfFkHHvsN-8BnGqW-oGiHqaR8nDAI4UjwSmmHlVJZEZk4XZMh3ds8Bhcj8PxApy1uTBaawc-01176vbyVZFUdqmsZ0KJiMX-IiyHQRCEdbZWu6JiyeScencTbvncyXrYObnpRgGbpXVZcsqW7am55g0hESVxb_j0cHH-ULMbNk9spFdWoVPlb-LzQ2TZ3CjUX4Ph7P1r8MlLtyplN_n6Re343wauw_ZPvh-6b0eyDVjQ-SaszlEVbkHWF1VWorLItJXi0KhIUWrKYzPptcBbZF2wZqNAliPTHRzCHM3vVUxRDT03daJc5AWeGh_R6Pl1BmN33WAbHvuXo4sBbpQa8LNn5SFiExdJHaRE2HBGSNOzRUKIZpJzpgVlCVOCqJBLSTXjqaWV8xQnShHhCcn9HVjKi1zvAooiKYX5K4Q6NdYgIg4jyy_kC-knYcrpHmxZu03eajKOSWOyPcDtp2nvuQCHxJPXD9OYqVXc5LPy-39XcwKdwWh4O7m9urs5gJV6Idei_Q5hqXyv9JGZgZTy2DneNws800s
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HXQXPzZxfpGD18yka5P0KOIQwbGDg3kaSZPgsGuHaxn615uk3Qd4EE8t9BFKXj7ey_vl9wPgVlPTDxUJEOEqQCHjCnHBCCIBUQm3O7LwFdOXIX0ah8-TaLI973C9Wi_9djk2aS95X2ujudAlZvugSSMbdTdAczwc3b95OtSQ23lSXSSKIvtuc4iaYIjg-G6-Wjr5MM9WaJMRTl2R2UuptMBBmS3E10qk6c6uMjiqKI6WnozQgUk-emUhe8n3b6rGP3_4GHS2d_fgaLMrnYA9nZ2C1g7tYBukA1GmBSzyVDtZDQ1zA421RzaAdSBa6IZTxSwBHd-lf3i0ONytOyxhBSO3bcJMZDmyHZBqOJuvIel-SHfAePD4-vCEatUFNAuc1ENscxypQ4OFS02EtLNUJBhrKhmjWhCaUCWwipiURFNmHEVcoBhWCotASNY_A40sz_Q5gJxLKewMj7SxHY9FHHHHFdQXsp9EhpEuaDs3TBcVsca09k4XoI1bNt98soLjaeVNp57J1vYX_7S_BIfVCa2D8V2BRvFZ6msbWhTyph5VP7z7znc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+50th+Midwest+Symposium+on+Circuits+and+Systems&rft.atitle=Fault+tolerance+of+feed-forward+artificial+neural+network+architectures+targeting+nano-scale+implementations&rft.au=Vural%2C+M.&rft.au=Ozgur%2C+A.&rft.au=Schmid%2C+A.&rft.au=Leblebici%2C+Y.&rft.date=2007-08-01&rft.pub=IEEE&rft.isbn=9781424411757&rft.issn=1548-3746&rft.spage=779&rft.epage=782&rft_id=info:doi/10.1109%2FMWSCAS.2007.4488693&rft.externalDocID=4488693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-3746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-3746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-3746&client=summon