Domain invariant speech features using a new divergence measure
Existing speech classification algorithms often perform well when evaluated on training and test data drawn from the same distribution. In practice, however, these distributions are not always the same. In these circumstances, the performance of trained models will likely decrease. In this paper, we...
Saved in:
| Published in | 2014 IEEE Spoken Language Technology Workshop (SLT) pp. 77 - 82 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2014
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/SLT.2014.7078553 |
Cover
| Abstract | Existing speech classification algorithms often perform well when evaluated on training and test data drawn from the same distribution. In practice, however, these distributions are not always the same. In these circumstances, the performance of trained models will likely decrease. In this paper, we discuss an underutilized divergence measure and derive an estimable upper bound on the test error rate that depends on the error rate on the training data and the distance between training and test distributions. Using this bound as motivation, we develop a feature learning algorithm that aims to identify invariant speech features that generalize well to data similar to, but different from, the training set. Comparative results confirm the efficacy of the algorithm on a set of cross-domain speech classification tasks. |
|---|---|
| AbstractList | Existing speech classification algorithms often perform well when evaluated on training and test data drawn from the same distribution. In practice, however, these distributions are not always the same. In these circumstances, the performance of trained models will likely decrease. In this paper, we discuss an underutilized divergence measure and derive an estimable upper bound on the test error rate that depends on the error rate on the training data and the distance between training and test distributions. Using this bound as motivation, we develop a feature learning algorithm that aims to identify invariant speech features that generalize well to data similar to, but different from, the training set. Comparative results confirm the efficacy of the algorithm on a set of cross-domain speech classification tasks. |
| Author | Wisler, Alan Berisha, Visar Liss, Julie Spanias, Andreas |
| Author_xml | – sequence: 1 givenname: Alan surname: Wisler fullname: Wisler, Alan organization: Dept. of Speech & Hearing, Arizona State Univ., Tempe, AZ, USA – sequence: 2 givenname: Visar surname: Berisha fullname: Berisha, Visar organization: Dept. of Speech & Hearing, Arizona State Univ., Tempe, AZ, USA – sequence: 3 givenname: Julie surname: Liss fullname: Liss, Julie organization: Dept. of Speech & Hearing, Arizona State Univ., Tempe, AZ, USA – sequence: 4 givenname: Andreas surname: Spanias fullname: Spanias, Andreas organization: Dept. of Speech & Hearing, Arizona State Univ., Tempe, AZ, USA |
| BookMark | eNotj01LAzEUACPowdbeBS_5A7u-t5uQ5CRSPyoseLA9l7fJ2xpw05JsK_57BXuaw8DAzMRl2icW4hahRgR3_9Gt6wZQ1QaM1bq9EDNUxjmDjVPX4uFpP1JMMqYT5UhpkuXA7D_lwDQdMxd5LDHtJMnE3zLEE-cdJ89yZCp__kZcDfRVeHHmXGxentfLVdW9v74tH7sqomunyqoQ0DDYAQERnTUcegoueEdBE-q-0azBgmftlPXYI3nPfQ8KglFDOxd3_93IzNtDjiPln-35qf0FEJVGTA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SLT.2014.7078553 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès ENAC - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1479971294 9781479971299 |
| EndPage | 82 |
| ExternalDocumentID | 7078553 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i193t-84dd17e08f10111987edbad9dc9ad5a15b25e5080ce5948c1b1accebb040d74f3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:04 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i193t-84dd17e08f10111987edbad9dc9ad5a15b25e5080ce5948c1b1accebb040d74f3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_7078553 |
| PublicationCentury | 2000 |
| PublicationDate | 20141201 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 20141201 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 IEEE Spoken Language Technology Workshop (SLT) |
| PublicationTitleAbbrev | SLT |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6212591 |
| Snippet | Existing speech classification algorithms often perform well when evaluated on training and test data drawn from the same distribution. In practice, however,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 77 |
| SubjectTerms | Abstracts Degradation Domain Adaptation Feature Selection Focusing Labeling Machine Learning Pathological Speech Analysis Pathology Speech |
| Title | Domain invariant speech features using a new divergence measure |
| URI | https://ieeexplore.ieee.org/document/7078553 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1tT55UWvGbHDyabbebzWZPHtRSREWwhd5KPiZapNtidz34651k24riwVsIgSQTwsxL3rwh5IJbhA1aCmbBCoYeKmW56SdMg9DKYkisXSDIPorhmN9N0kmDXG5zYQAgkM8g8s3wl28XpvJPZV2vTJOmSZM0MynqXK3Nz2Mv7z7fjzxVi0frYT_qpQR3MdglD5uJapbIW1SVOjKfvzQY_7uSPdL5TsyjT1uXs08aULTJ1c1ijviezooPBL5oKbpaAphX6iCodq6oJ7e_UEUxhKbWEzGCAied1--DHTIe3I6uh2xdF4HNMNwqmeTWxhn0pIt9pfhcZmDRsLk1OZpXxanup4CBV8-nWHFpYh0rY0BrvLA24y45IK1iUcAhwYXwvlbOQq4cT6yRiRNCGY44QyFodkek7Tc_XdbSF9P1vo__7j4hO_4AarbHKWmV7xWcoc8u9Xk4rC-ZnZrn |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSkBozf9uDRXVi2XXZPHlSCCsRESLiRfkyVEBYiiwd_vdNdwGg8eGuaJm2naWZe--YNwBU3BBtUHHkGTeSRhxJeohuhpzBS0lBIrGxOkO1F7QF_HIphCa43uTCImJPP0HfN_C_fzPTSPZXVnDKNEOEWbAvOuSiytdZ_j_Wk9tLpO7IW91cDf1RMyR1Gaw-666kKnsjEX2bK15-_VBj_u5Z9qH6n5rHnjdM5gBKmFbi5m00J4bNx-kHQl2zFFnNE_cYs5rqdC-bo7a9MMgqimXFUjFyDk02LF8IqDFr3_du2t6qM4I0p4Mq8mBsTNLEe28DVik_iJhoybWJ0QgaWgVANgRR61V2SFY91oAKpNSpFV9Y0uQ0PoZzOUjwCWghvKGkNJtLy0Og4tFEkNSekIQk222OouM2P5oX4xWi175O_uy9hp93vdkadh97TKey6wyi4H2dQzt6XeE4ePFMX-cF9AeUFnjQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Spoken+Language+Technology+Workshop+%28SLT%29&rft.atitle=Domain+invariant+speech+features+using+a+new+divergence+measure&rft.au=Wisler%2C+Alan&rft.au=Berisha%2C+Visar&rft.au=Liss%2C+Julie&rft.au=Spanias%2C+Andreas&rft.date=2014-12-01&rft.pub=IEEE&rft.spage=77&rft.epage=82&rft_id=info:doi/10.1109%2FSLT.2014.7078553&rft.externalDocID=7078553 |