Domain invariant speech features using a new divergence measure

Existing speech classification algorithms often perform well when evaluated on training and test data drawn from the same distribution. In practice, however, these distributions are not always the same. In these circumstances, the performance of trained models will likely decrease. In this paper, we...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Spoken Language Technology Workshop (SLT) pp. 77 - 82
Main Authors Wisler, Alan, Berisha, Visar, Liss, Julie, Spanias, Andreas
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2014
Subjects
Online AccessGet full text
DOI10.1109/SLT.2014.7078553

Cover

Abstract Existing speech classification algorithms often perform well when evaluated on training and test data drawn from the same distribution. In practice, however, these distributions are not always the same. In these circumstances, the performance of trained models will likely decrease. In this paper, we discuss an underutilized divergence measure and derive an estimable upper bound on the test error rate that depends on the error rate on the training data and the distance between training and test distributions. Using this bound as motivation, we develop a feature learning algorithm that aims to identify invariant speech features that generalize well to data similar to, but different from, the training set. Comparative results confirm the efficacy of the algorithm on a set of cross-domain speech classification tasks.
AbstractList Existing speech classification algorithms often perform well when evaluated on training and test data drawn from the same distribution. In practice, however, these distributions are not always the same. In these circumstances, the performance of trained models will likely decrease. In this paper, we discuss an underutilized divergence measure and derive an estimable upper bound on the test error rate that depends on the error rate on the training data and the distance between training and test distributions. Using this bound as motivation, we develop a feature learning algorithm that aims to identify invariant speech features that generalize well to data similar to, but different from, the training set. Comparative results confirm the efficacy of the algorithm on a set of cross-domain speech classification tasks.
Author Wisler, Alan
Berisha, Visar
Liss, Julie
Spanias, Andreas
Author_xml – sequence: 1
  givenname: Alan
  surname: Wisler
  fullname: Wisler, Alan
  organization: Dept. of Speech & Hearing, Arizona State Univ., Tempe, AZ, USA
– sequence: 2
  givenname: Visar
  surname: Berisha
  fullname: Berisha, Visar
  organization: Dept. of Speech & Hearing, Arizona State Univ., Tempe, AZ, USA
– sequence: 3
  givenname: Julie
  surname: Liss
  fullname: Liss, Julie
  organization: Dept. of Speech & Hearing, Arizona State Univ., Tempe, AZ, USA
– sequence: 4
  givenname: Andreas
  surname: Spanias
  fullname: Spanias, Andreas
  organization: Dept. of Speech & Hearing, Arizona State Univ., Tempe, AZ, USA
BookMark eNotj01LAzEUACPowdbeBS_5A7u-t5uQ5CRSPyoseLA9l7fJ2xpw05JsK_57BXuaw8DAzMRl2icW4hahRgR3_9Gt6wZQ1QaM1bq9EDNUxjmDjVPX4uFpP1JMMqYT5UhpkuXA7D_lwDQdMxd5LDHtJMnE3zLEE-cdJ89yZCp__kZcDfRVeHHmXGxentfLVdW9v74tH7sqomunyqoQ0DDYAQERnTUcegoueEdBE-q-0azBgmftlPXYI3nPfQ8KglFDOxd3_93IzNtDjiPln-35qf0FEJVGTA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SLT.2014.7078553
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès ENAC - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479971294
9781479971299
EndPage 82
ExternalDocumentID 7078553
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i193t-84dd17e08f10111987edbad9dc9ad5a15b25e5080ce5948c1b1accebb040d74f3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:04 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i193t-84dd17e08f10111987edbad9dc9ad5a15b25e5080ce5948c1b1accebb040d74f3
PageCount 6
ParticipantIDs ieee_primary_7078553
PublicationCentury 2000
PublicationDate 20141201
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 20141201
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Spoken Language Technology Workshop (SLT)
PublicationTitleAbbrev SLT
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6212591
Snippet Existing speech classification algorithms often perform well when evaluated on training and test data drawn from the same distribution. In practice, however,...
SourceID ieee
SourceType Publisher
StartPage 77
SubjectTerms Abstracts
Degradation
Domain Adaptation
Feature Selection
Focusing
Labeling
Machine Learning
Pathological Speech Analysis
Pathology
Speech
Title Domain invariant speech features using a new divergence measure
URI https://ieeexplore.ieee.org/document/7078553
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1tT55UWvGbHDyabbebzWZPHtRSREWwhd5KPiZapNtidz34651k24riwVsIgSQTwsxL3rwh5IJbhA1aCmbBCoYeKmW56SdMg9DKYkisXSDIPorhmN9N0kmDXG5zYQAgkM8g8s3wl28XpvJPZV2vTJOmSZM0MynqXK3Nz2Mv7z7fjzxVi0frYT_qpQR3MdglD5uJapbIW1SVOjKfvzQY_7uSPdL5TsyjT1uXs08aULTJ1c1ijviezooPBL5oKbpaAphX6iCodq6oJ7e_UEUxhKbWEzGCAied1--DHTIe3I6uh2xdF4HNMNwqmeTWxhn0pIt9pfhcZmDRsLk1OZpXxanup4CBV8-nWHFpYh0rY0BrvLA24y45IK1iUcAhwYXwvlbOQq4cT6yRiRNCGY44QyFodkek7Tc_XdbSF9P1vo__7j4hO_4AarbHKWmV7xWcoc8u9Xk4rC-ZnZrn
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSkBozf9uDRXVi2XXZPHlSCCsRESLiRfkyVEBYiiwd_vdNdwGg8eGuaJm2naWZe--YNwBU3BBtUHHkGTeSRhxJeohuhpzBS0lBIrGxOkO1F7QF_HIphCa43uTCImJPP0HfN_C_fzPTSPZXVnDKNEOEWbAvOuSiytdZ_j_Wk9tLpO7IW91cDf1RMyR1Gaw-666kKnsjEX2bK15-_VBj_u5Z9qH6n5rHnjdM5gBKmFbi5m00J4bNx-kHQl2zFFnNE_cYs5rqdC-bo7a9MMgqimXFUjFyDk02LF8IqDFr3_du2t6qM4I0p4Mq8mBsTNLEe28DVik_iJhoybWJ0QgaWgVANgRR61V2SFY91oAKpNSpFV9Y0uQ0PoZzOUjwCWghvKGkNJtLy0Og4tFEkNSekIQk222OouM2P5oX4xWi175O_uy9hp93vdkadh97TKey6wyi4H2dQzt6XeE4ePFMX-cF9AeUFnjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Spoken+Language+Technology+Workshop+%28SLT%29&rft.atitle=Domain+invariant+speech+features+using+a+new+divergence+measure&rft.au=Wisler%2C+Alan&rft.au=Berisha%2C+Visar&rft.au=Liss%2C+Julie&rft.au=Spanias%2C+Andreas&rft.date=2014-12-01&rft.pub=IEEE&rft.spage=77&rft.epage=82&rft_id=info:doi/10.1109%2FSLT.2014.7078553&rft.externalDocID=7078553