On inferring rumor source for SIS model under multiple observations

This paper studies the problem of a single rumor source detection based on the susceptible-infected-susceptible (SIS) spreading model. Based on the rumor centrality proposed in the Susceptible-Infected (SI) model by Shah and Zaman, we propose a rumor centrality based algorithm, that leverages multip...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Digital Signal Processing proceedings pp. 755 - 759
Main Authors Wang, Zhaoxu, Zhang, Wenyi, Tan, Chee Wei
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 09.09.2015
Subjects
Online AccessGet full text
ISSN1546-1874
2165-3577
DOI10.1109/ICDSP.2015.7251977

Cover

Abstract This paper studies the problem of a single rumor source detection based on the susceptible-infected-susceptible (SIS) spreading model. Based on the rumor centrality proposed in the Susceptible-Infected (SI) model by Shah and Zaman, we propose a rumor centrality based algorithm, that leverages multiple observations to first construct a diffusion tree graph, and then use the union rumor centrality to find the rumor source. Our simulation results on different network structures shows that our proposed algorithm performs well. For tree networks, increasing the observations can dramatically improve the exact detection probability. This clearly indicates that a richer diversity enhances detect-ability.
AbstractList This paper studies the problem of a single rumor source detection based on the susceptible-infected-susceptible (SIS) spreading model. Based on the rumor centrality proposed in the Susceptible-Infected (SI) model by Shah and Zaman, we propose a rumor centrality based algorithm, that leverages multiple observations to first construct a diffusion tree graph, and then use the union rumor centrality to find the rumor source. Our simulation results on different network structures shows that our proposed algorithm performs well. For tree networks, increasing the observations can dramatically improve the exact detection probability. This clearly indicates that a richer diversity enhances detect-ability.
Author Chee Wei Tan
Zhaoxu Wang
Wenyi Zhang
Author_xml – sequence: 1
  givenname: Zhaoxu
  surname: Wang
  fullname: Wang, Zhaoxu
– sequence: 2
  givenname: Wenyi
  surname: Zhang
  fullname: Zhang, Wenyi
– sequence: 3
  givenname: Chee
  surname: Tan
  middlename: Wei
  fullname: Tan, Chee Wei
BookMark eNotkEtLAzEUhaNUsFX_gG6ydDM1N-8spb4KhQrV9TCPOxKZSWoyI_jvLbSrcxYfH4ezILMQAxJyC2wJwNzDevW0e19yBmppuAJnzBlZgDTOWaasOSdzDloVQhkzI3NQUhdgjbwki5y_GVMCHMzJahuoDx2m5MMXTdMQE81xSg3S7lB36x0dYos9nUKLiQ5TP_p9jzTWGdNvNfoY8jW56Ko-480pr8jny_PH6q3YbF_Xq8dN4cGJsZBNZ6XWnBvRKK1axZitbCu5PMxyUjKnADsBqI0RjHdQi1rq2qKSKIFJcUXuj959ij8T5rEcfG6w76uAccolGM2Zs1bAAb07oh4Ry33yQ5X-ytNP4h95vFpD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SP
8FD
L7M
DOI 10.1109/ICDSP.2015.7251977
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1479980587
9781479980581
EISSN 2165-3577
EndPage 759
ExternalDocumentID 7251977
Genre orig-research
GroupedDBID -~X
29J
6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
AI.
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
VH1
7SP
8FD
L7M
ID FETCH-LOGICAL-i193t-4cf84662273c565d5008a8d4248749440951ef31e677302f1b3b46b8e54e41043
IEDL.DBID RIE
ISSN 1546-1874
IngestDate Fri Jul 11 00:15:22 EDT 2025
Wed Aug 27 02:43:01 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i193t-4cf84662273c565d5008a8d4248749440951ef31e677302f1b3b46b8e54e41043
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1762098831
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1762098831
ieee_primary_7251977
PublicationCentury 2000
PublicationDate 2015-09-09
PublicationDateYYYYMMDD 2015-09-09
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-09
  day: 09
PublicationDecade 2010
PublicationTitle International Conference on Digital Signal Processing proceedings
PublicationTitleAbbrev ICDSP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0053191
Score 1.6557658
Snippet This paper studies the problem of a single rumor source detection based on the susceptible-infected-susceptible (SIS) spreading model. Based on the rumor...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 755
SubjectTerms Algorithms
Approximation algorithms
Computational modeling
Conferences
Detectors
Diffusion
Digital signal processing
Heuristic algorithms
Information dissemination
Joints
maximum likelihood detection
Network topology
Networks
Online social networks
rumor source detection
Silicon
SIS model
statistical inference
Trees
Unions
Title On inferring rumor source for SIS model under multiple observations
URI https://ieeexplore.ieee.org/document/7251977
https://www.proquest.com/docview/1762098831
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFH7ZdtKLPzbj_JWaeLQMWIFyni6byXTJXLIboeWRGCMYBhf_etsC06gHb3Cgacrre19fv-89gBvbUy4QpUtVeJCUsYRREYuUxm6YyoQnnJvUxeLRn63Zw8bbdOB2p4VBREM-Q0s_mrv8JJeVTpWNAiOzDLrQDbhfa7Var6tNqa6Nynyq-8y1Ahk7HM0nd6ulZnF5VjNC00rll_81QWV6AIt2OjWX5NWqSmHJjx-VGv8730MYfMn3yHIXmI6gg9kx7H-rPNiHyVNGNA-r0K-kqN7ygtR5fKJQLFnNV8T0yCFaY1aQlnZIcrHL4m4HsJ7eP09mtOmnQF8UTCspk6lCG76rEItUOC7xVPyPecJcdWhhIWMabWE6dtAP1L53U0eMBfMFR48hU8e28Qn0sjzDUyCodnJscxnLQDBEKbSkNVDYQQY8ESiG0NfLEb3XJTOiZiWGcN0ueKTMWN9NxBnm1TZylFO2Q87Hztnfn57Dnv6Dht4VXkCvLCq8VHigFFfGED4BLXqzNA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSLDzDic008WqBl2m7PqAEFJAESbk13O02MsTWFXvz17vaBRj14aw_dbLazM9_Oft8MwE3XVi6QpGWo8CANxBANEYjICCwvkiEPOc9TF-OJM1jg49Je1uB2o4Uhopx8Rm39mN_lh4nMdKqs4-YyS3cLtm1EtAu1VuV3tTEV1VHRMXSnuUoi0_U6w_7dbKp5XHa7HKNspvLLA-dh5WEfxtWECjbJaztbi7b8-FGr8b8zPoDml4CPTTeh6RBqFB_B3rfagw3oP8dMM7FS_crS7C1JWZHJZwrHstlwxvIuOUyrzFJWEQ9ZIjZ53FUTFg_38_7AKDsqGC8KqK0NlJHCG46lMItUSC60FQIIeIiWOragh6jxFkU9kxxX7XwrMkVPoCM42UioDm69Y6jHSUwnwEjt5aDLZSBdgURSaFGrq9CDdHkoSLSgoZfDfy-KZvjlSrTgulpwXxmyvp0IYkqylW8qt9z1OO-Zp39_egU7g_l45I-Gk6cz2NV_Myd7eedQX6cZXSh0sBaXuVF8Ar91toE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Digital+Signal+Processing+proceedings&rft.atitle=On+inferring+rumor+source+for+SIS+model+under+multiple+observations&rft.au=Zhaoxu+Wang&rft.au=Wenyi+Zhang&rft.au=Chee+Wei+Tan&rft.date=2015-09-09&rft.pub=IEEE&rft.issn=1546-1874&rft.spage=755&rft.epage=759&rft_id=info:doi/10.1109%2FICDSP.2015.7251977&rft.externalDocID=7251977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-1874&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-1874&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-1874&client=summon