IdeaGraph: A Graph-Based Algorithm of Mining Latent Information for Human Cognition

Knowledge discovery in texts (KDT) has been widely applied for business data analysis, but it only reveals a common pattern based on large amounts of data. Since 2000, chance discovery (CD) as an extension of KDT has been proposed to detect rare but significant events or situations regarded as chanc...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Conference on Systems, Man, and Cybernetics pp. 952 - 957
Main Authors Hao Wang, Fanjiang Xu, Xiaohui Hu, Ohsawa, Yukio
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.10.2013
Subjects
Online AccessGet full text
ISSN1062-922X
DOI10.1109/SMC.2013.167

Cover

Abstract Knowledge discovery in texts (KDT) has been widely applied for business data analysis, but it only reveals a common pattern based on large amounts of data. Since 2000, chance discovery (CD) as an extension of KDT has been proposed to detect rare but significant events or situations regarded as chance candidates for human decision making. Key Graph is a useful and important algorithm as well as a tool in CD for mining and visualizing these chances. However, a scenario graph visualized by Key Graph is machine-oriented, causing a bottleneck of human cognition. Traditional knowledge discovery also runs into the similar problem. In this paper, we propose a human-oriented algorithm called IdeaGraph which can generate a rich scenario graph for human's perception, comprehension and even innovation. IdeaGraph not only works on discovering more rare and significant chances, but also focuses on uncovering latent relationships among chances for gaining richer and deeper human insights. Our experiment has validated the advantages of IdeaGraph by comparing with Key Graph.
AbstractList Knowledge discovery in texts (KDT) has been widely applied for business data analysis, but it only reveals a common pattern based on large amounts of data. Since 2000, chance discovery (CD) as an extension of KDT has been proposed to detect rare but significant events or situations regarded as chance candidates for human decision making. Key Graph is a useful and important algorithm as well as a tool in CD for mining and visualizing these chances. However, a scenario graph visualized by Key Graph is machine-oriented, causing a bottleneck of human cognition. Traditional knowledge discovery also runs into the similar problem. In this paper, we propose a human-oriented algorithm called IdeaGraph which can generate a rich scenario graph for human's perception, comprehension and even innovation. IdeaGraph not only works on discovering more rare and significant chances, but also focuses on uncovering latent relationships among chances for gaining richer and deeper human insights. Our experiment has validated the advantages of IdeaGraph by comparing with Key Graph.
Author Hao Wang
Ohsawa, Yukio
Fanjiang Xu
Xiaohui Hu
Author_xml – sequence: 1
  surname: Hao Wang
  fullname: Hao Wang
  email: wanghao@iscas.ac.cn
  organization: Sci. & Technol. on Integrated Inf. Syst. Lab., Inst. of Software, Beijing, China
– sequence: 2
  surname: Fanjiang Xu
  fullname: Fanjiang Xu
  organization: Sci. & Technol. on Integrated Inf. Syst. Lab., Inst. of Software, Beijing, China
– sequence: 3
  surname: Xiaohui Hu
  fullname: Xiaohui Hu
  organization: Sci. & Technol. on Integrated Inf. Syst. Lab., Inst. of Software, Beijing, China
– sequence: 4
  givenname: Yukio
  surname: Ohsawa
  fullname: Ohsawa, Yukio
  organization: Dept. of Syst. Innovations, Univ. of Tokyo, Tokyo, Japan
BookMark eNotj71OwzAURo1UJNrCxsbiF0i4vo7tmi1E0EZKxVCQ2Kqbxm6NGqdKwsDbU36mc3SGT_pmbBK76Bi7FZAKAfZ-sy5SBCFToc0Fm4nMWAtaIU7YVIDGxCK-X7HZMHwAIGRiMWWbsnG07Ol0eOA5_5XkkQbX8Py47_owHlreeb4OMcQ9r2h0ceRl9F3f0hi6yM_GV58tRV50-xh-2jW79HQc3M0_5-zt-em1WCXVy7Is8ioJYqHGBLVXFoySAmpyWNOOGlDaAGKjam3UIrPZjpCE9xJ909S1UWZ3PmElotRyzu7-doNzbnvqQ0v911YbFBZBfgOkk078
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SMC.2013.167
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISBN 1479906522
9781479906529
EndPage 957
ExternalDocumentID 6721920
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i185t-26f59075310bae2bacad0567022d5b6758494ca2a1ff32fddbb757c9229322363
IEDL.DBID RIE
ISSN 1062-922X
IngestDate Wed Aug 27 03:58:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i185t-26f59075310bae2bacad0567022d5b6758494ca2a1ff32fddbb757c9229322363
PageCount 6
ParticipantIDs ieee_primary_6721920
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationTitle 2013 IEEE International Conference on Systems, Man, and Cybernetics
PublicationTitleAbbrev smc
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020418
ssj0001772919
Score 1.9697566
Snippet Knowledge discovery in texts (KDT) has been widely applied for business data analysis, but it only reveals a common pattern based on large amounts of data....
SourceID ieee
SourceType Publisher
StartPage 952
SubjectTerms Algorithm design and analysis
Chance Discovery
Clustering algorithms
Cognition
Data mining
Decision making
IdeaGraph
KeyGraph
Knowledge discovery
Latent Information
Technological innovation
Title IdeaGraph: A Graph-Based Algorithm of Mining Latent Information for Human Cognition
URI https://ieeexplore.ieee.org/document/6721920
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ73ofoi_ycGDgunWtE1ab3M4p1gR5mC3kV_VobYyu4t_vS9t3VQ8eAuFQnhJeN-XfO97CB37QBq6biIIh-0CBEUzIo1rCE14KAHfc1Wo3eM7Nhz7N5NgUkNny1oYY0whPjOOHRZv-TpTC3tV1mFAVyIKBH2Nh6ys1Vrdp1iYaK3JKrLV9d2yDI5RElE6WYreo84o7ltNl-e47GdTlSKnDDZR_DWbUkry7Cxy6aiPX0aN_53uFmqvqvfw_TIvNVDNpE208c14sIka1ZF-xyeV7_RpC42utRFX1sD6HPdwMSAXkOQ07r08ZvNZ_vSKswTHRUsJfAsgNc1xVc5klxfDCBePArhfipKytI3Gg8uH_pBUPRfIDDJ3TihLAuDLcDK7UhgqhRIaMBKHVK8DadmFH_lKUOEmiUcTraXkAVcQYQCC1GPeNqqnWWp2EFYiUgH3fO5x4cvEBeYShS78EjI_MiHdRS0bs-lbaasxrcK19_fnfbRu16zU0R2gej5fmEPAA7k8KjbCJ3xOsDI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUqGIAF-oH4xgMDSKRtHCdO2EpFaaGpkNpK3Sp_BSogQSVd-PWck9ACYmCzIkWyzrbuPfvdO4TOKJCGph1xi8F2AYKiPEtoW1skYr4AfM9kpnYPB153TO8m7qSELpe1MFrrTHym62aYveWrRC7MVVnDA7oSECDo6y6l1M2rtVY3KgYoGnOygm41qZ0XwnnECgiZLGXvQWMYto2qy6nb3s-2KllW6Wyj8Gs-uZjkub5IRV1-_LJq_O-Ed1BtVb-HH5aZqYxKOq6grW_WgxVULg71Oz4vnKcvqmjYU5rfGgvrK9zC2cC6hjSncOvlMZnP0qdXnEQ4zJpK4D7A1DjFRUGTWWAMI5w9C-B2LktK4hoad25G7a5VdF2wZpC7U4t4kQuMGc5mU3BNBJdcAUpikOyVKwy_oAGVnHA7ihwSKSUEc5mECAMUJI7n7KK1OIn1HsKSB9JlDmUO41RENnCXwLfhF9-jgfbJPqqamE3fcmONaRGug78_n6KN7ijsT_u9wf0h2jTrl6vqjtBaOl_oY0AHqTjJNsUn6Ymzfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=IdeaGraph%3A+A+Graph-Based+Algorithm+of+Mining+Latent+Information+for+Human+Cognition&rft.au=Hao+Wang&rft.au=Fanjiang+Xu&rft.au=Xiaohui+Hu&rft.au=Ohsawa%2C+Yukio&rft.date=2013-10-01&rft.pub=IEEE&rft.issn=1062-922X&rft.spage=952&rft.epage=957&rft_id=info:doi/10.1109%2FSMC.2013.167&rft.externalDocID=6721920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-922X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-922X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-922X&client=summon