Differentiable Programming based Step Size Optimization for LMS and NLMS Algorithms
We propose TLMS (Trainable Least Mean Squares) and TNLMS (Trainable Normalized LMS) algorithms, which use different step size parameter at each iteration determined by machine learning approach. It has been known that LMS algorithm can achieve fast convergence and small steady-state error simultaneo...
Saved in:
| Published in | Proceedings ... Asia-Pacific Signal and Information Processing Association Annual Summit and Conference APSIPA ASC ... (Online) pp. 1721 - 1727 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.11.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2640-0103 |
| DOI | 10.1109/APSIPAASC47483.2019.9023175 |
Cover
| Abstract | We propose TLMS (Trainable Least Mean Squares) and TNLMS (Trainable Normalized LMS) algorithms, which use different step size parameter at each iteration determined by machine learning approach. It has been known that LMS algorithm can achieve fast convergence and small steady-state error simultaneously by dynamically controlling the step size compared as a fix step size, however, in conventional variable step size approaches, the step size parameter has been controlled in rather heuristic manners. In this study, based on the concept of differential programming, we unfold the iterative process of LMS or NLMS algorithms, and obtain a multilayer signal-flow graph similar to a neural network, where each layer has a step size of each iteration of LMS or NLMS algorithm as an independent learnable parameter. Then, we optimize the step size parameters of all iterations by using a machine learning approach, such as the stochastic gradient descent. Numerical experiments demonstrate the performance of the proposed TLMS and TNLMS algorithms under various conditions. |
|---|---|
| AbstractList | We propose TLMS (Trainable Least Mean Squares) and TNLMS (Trainable Normalized LMS) algorithms, which use different step size parameter at each iteration determined by machine learning approach. It has been known that LMS algorithm can achieve fast convergence and small steady-state error simultaneously by dynamically controlling the step size compared as a fix step size, however, in conventional variable step size approaches, the step size parameter has been controlled in rather heuristic manners. In this study, based on the concept of differential programming, we unfold the iterative process of LMS or NLMS algorithms, and obtain a multilayer signal-flow graph similar to a neural network, where each layer has a step size of each iteration of LMS or NLMS algorithm as an independent learnable parameter. Then, we optimize the step size parameters of all iterations by using a machine learning approach, such as the stochastic gradient descent. Numerical experiments demonstrate the performance of the proposed TLMS and TNLMS algorithms under various conditions. |
| Author | Hayashi, Kazunori Shiohara, Kaede Sasaki, Tetsuya |
| Author_xml | – sequence: 1 givenname: Kazunori surname: Hayashi fullname: Hayashi, Kazunori organization: RIKEN Center for Advanced Intelligence Project – sequence: 2 givenname: Kaede surname: Shiohara fullname: Shiohara, Kaede organization: Osaka City University,Osaka,Japan – sequence: 3 givenname: Tetsuya surname: Sasaki fullname: Sasaki, Tetsuya organization: Osaka City University,Osaka,Japan |
| BookMark | eNotkLtOw0AQRRcEEiHkC2hWonaYfcS7U1rhFSmQSIY6GtvjsCh-aO2GfD0gUt2jU5ziXouLtmtZiDsFc6UA77NtvtpmWb60znoz16BwjqCNcoszMUPnldNeGW29PxcTnVpIQIG5ErNh-AIAo8FYhInIH0Jdc-R2DFQcWG5jt4_UNKHdy4IGrmQ-ci_zcGS56cfQhCONoWtl3UW5fs0ltZV8-4PssO9iGD-b4UZc1nQYeHbaqfh4enxfviTrzfNqma2ToLwdEypRO1SlJQupJcO2RGeQ2FV1UaAuseI01bjw5tdWhU4LNJXn0mtKSTkzFbf_3cDMuz6GhuL37nSD-QHTsFTd |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/APSIPAASC47483.2019.9023175 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore digital library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781728132488 1728132487 |
| EISSN | 2640-0103 |
| EndPage | 1727 |
| ExternalDocumentID | 9023175 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i184t-ac92791c4a4064a3e4c9739ae7dfbb92c9de662958339adb26b93d8ec82a6a173 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:44:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i184t-ac92791c4a4064a3e4c9739ae7dfbb92c9de662958339adb26b93d8ec82a6a173 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_9023175 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings ... Asia-Pacific Signal and Information Processing Association Annual Summit and Conference APSIPA ASC ... (Online) |
| PublicationTitleAbbrev | APSIPA |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203490 |
| Score | 1.7065862 |
| Snippet | We propose TLMS (Trainable Least Mean Squares) and TNLMS (Trainable Normalized LMS) algorithms, which use different step size parameter at each iteration... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1721 |
| SubjectTerms | Convergence Machine learning algorithms Optimization Signal processing algorithms Time-domain analysis Time-varying systems Training |
| Title | Differentiable Programming based Step Size Optimization for LMS and NLMS Algorithms |
| URI | https://ieeexplore.ieee.org/document/9023175 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwGP0CPBh98QLGe5rooxu7dOv6uKAEjSDJJOGN9DYlwjA4Xvj1ttvES3zwrdmapWnTnq_fzjkfwBVLsS-4Pv30ZUFamKTSYoFwLCpIEHIiXJyafEd_EPZG-H4cjGtwvdHCKKUK8pmyTbP4ly8XYmVSZW1qzMpIUIc6icJSq7XJp_iecVpxtuCystFsx8PkbhjHSQcTHPmGxUXt6gs_SqkUSNLdhf7nGEoCyau9yrkt1r_sGf87yD1ofWn20HCDRvtQU9kB7HyzG2xCclNVQ9G7ms-K7oabNdcvkUEziQznCyXTtUKP-iiZVxpNpANb9NBPEMskGphGPHteLKf5y_y9BaPu7VOnZ1VFFaypvszlFhPUI9QVmGkox8xXWFDiU6aITDmnnqBShaFHjRqLMsm9kFNfRkpEHguZS_xDaGSLTB0B0qGJ0NGXDLlwsHAU5SrSXWjqppGpbXUMTTM9k7fSN2NSzczJ349PYdssUanzO4NGvlypcw34Ob8oVvoD8yKqgQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwGP2CmHh58QLGu0300cHYunV9JCgBZUgySHgjvU2JXAyOF3697TbxEh98a7Zmadq05-u3c84HcMNi7AquTz99WZAWJrG0mCdsiwri-ZyIGo5NviPs-q0Bfhh6wwLcrrUwSqmUfKYqppn-y5dzsTSpsio1ZmXE24BND2PsZWqtdUbFdYzXir0F17mRZrXei9q9ej1qYIID1_C4aCX_xo9iKimWNPcg_BxFRiF5rSwTXhGrXwaN_x3mPpS_VHuot8ajAyio2SHsfjMcLEF0l9dD0fuaT9Luhp011S-RwTOJDOsLReOVQk_6MJnmKk2kQ1vUCSPEZhJ1TaM-eZ4vxsnL9L0Mg-Z9v9Gy8rIK1lhf5xKLCeoQWhOYaTDHzFVYUOJSpoiMOaeOoFL5vkONHosyyR2fU1cGSgQO81mNuEdQnM1n6hiQDk6Ejr-kz4WNha0oV4HuQuNaHJjqVidQMtMzesucM0b5zJz-_fgKtlv9sDPqtLuPZ7BjlitT_Z1DMVks1YWG_4Rfpqv-ARE1rc4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+...+Asia-Pacific+Signal+and+Information+Processing+Association+Annual+Summit+and+Conference+APSIPA+ASC+...+%28Online%29&rft.atitle=Differentiable+Programming+based+Step+Size+Optimization+for+LMS+and+NLMS+Algorithms&rft.au=Hayashi%2C+Kazunori&rft.au=Shiohara%2C+Kaede&rft.au=Sasaki%2C+Tetsuya&rft.date=2019-11-01&rft.pub=IEEE&rft.eissn=2640-0103&rft.spage=1721&rft.epage=1727&rft_id=info:doi/10.1109%2FAPSIPAASC47483.2019.9023175&rft.externalDocID=9023175 |