VHCFormer: Vignetting Removal Based on Hybrid Channel Transformer

Vignetting is a common phenomenon in photography and imaging. It is characterized by a degradation from center to edges. Vignetting can be caused by optical, mechanical, and natural factors. Currently, most methods for vignetting removal are traditional approaches. The inefficiency of these methods,...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Control, Automation and Robotics : proceedings pp. 452 - 457
Main Authors Wu, Juhua, Li, Siqi, Chen, Yijia, Wu, Shiting, Yi, Fanghai, Luo, Shenghong, Shao, Changcheng, Lei, Tao
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.04.2025
Subjects
Online AccessGet full text
ISSN2251-2454
DOI10.1109/ICCAR64901.2025.11072940

Cover

Abstract Vignetting is a common phenomenon in photography and imaging. It is characterized by a degradation from center to edges. Vignetting can be caused by optical, mechanical, and natural factors. Currently, most methods for vignetting removal are traditional approaches. The inefficiency of these methods, which involve single-image inputs and manual adjustment of numerous parameters, hinders effective vignetting removal. To address this issue, we propose VHCFormer, a neural network designed to remove vignetting through multi-dimensional analysis of channels, spatial information, and pixel-level features. VHCFormer consists of the Hybrid Spatial-Channel Transformer and the Pixel Channel Fusion Transformer. The Pixel Channel Fusion Transformer leverages a sliding window mechanism to handle edge information in the image for Vignetting detection. Hybrid Spatial-Channel Transformer captures global information at the pixel level and adaptively adjusts the weights, particularly in high channel scenarios. Quantities and qualities experimental results validate that our proposed network outperforms state-of-the-art approaches in terms of vignetting removal.
AbstractList Vignetting is a common phenomenon in photography and imaging. It is characterized by a degradation from center to edges. Vignetting can be caused by optical, mechanical, and natural factors. Currently, most methods for vignetting removal are traditional approaches. The inefficiency of these methods, which involve single-image inputs and manual adjustment of numerous parameters, hinders effective vignetting removal. To address this issue, we propose VHCFormer, a neural network designed to remove vignetting through multi-dimensional analysis of channels, spatial information, and pixel-level features. VHCFormer consists of the Hybrid Spatial-Channel Transformer and the Pixel Channel Fusion Transformer. The Pixel Channel Fusion Transformer leverages a sliding window mechanism to handle edge information in the image for Vignetting detection. Hybrid Spatial-Channel Transformer captures global information at the pixel level and adaptively adjusts the weights, particularly in high channel scenarios. Quantities and qualities experimental results validate that our proposed network outperforms state-of-the-art approaches in terms of vignetting removal.
Author Luo, Shenghong
Wu, Juhua
Chen, Yijia
Li, Siqi
Shao, Changcheng
Lei, Tao
Yi, Fanghai
Wu, Shiting
Author_xml – sequence: 1
  givenname: Juhua
  surname: Wu
  fullname: Wu, Juhua
  organization: Guangdong University of Technology,China
– sequence: 2
  givenname: Siqi
  surname: Li
  fullname: Li, Siqi
  organization: Guangdong University of Technology,China
– sequence: 3
  givenname: Yijia
  surname: Chen
  fullname: Chen, Yijia
  organization: Guangdong University of Technology,China
– sequence: 4
  givenname: Shiting
  surname: Wu
  fullname: Wu, Shiting
  organization: Huizhou Boluo Power Supply Bureau Guangdong Power Grid Co., Ltd.,China
– sequence: 5
  givenname: Fanghai
  surname: Yi
  fullname: Yi, Fanghai
  organization: Guangdong University of Technology,China
– sequence: 6
  givenname: Shenghong
  surname: Luo
  fullname: Luo, Shenghong
  organization: University of Macau
– sequence: 7
  givenname: Changcheng
  surname: Shao
  fullname: Shao, Changcheng
  organization: Guangdong University of Technology,China
– sequence: 8
  givenname: Tao
  surname: Lei
  fullname: Lei, Tao
  email: taolei_gdut@126.com
  organization: Guangdong University of Technology,China
BookMark eNo1j11LwzAYhaMoOGf_gRf5A535TuNdDc4OBsKYux1p-2ZG2lTSIuzfu_lxdTgPPAfOLbqKQwSEMCULSol5WFlbbpQwhC4YYfIMNTOCXKDMaFNwTuWJK32JZoxJmjMhxQ3KxvGDEEK5UoyTGSp3lV0OqYf0iHfhEGGaQjzgDfTDl-vwkxuhxUPE1bFOocX23cUIHd4mF0f_492ha--6EbK_nKO35fPWVvn69WVly3UeqC6mvK0dEOVVw1vSEO61kLU0vPBQFHVz6kY77aj0UgKjmiuuQTlGlWhMWyvD5-j-dzcAwP4zhd6l4_7_Nf8GNQJNMw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCAR64901.2025.11072940
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331520267
EISSN 2251-2454
EndPage 457
ExternalDocumentID 11072940
Genre orig-research
GrantInformation_xml – fundername: Huizhou University
  grantid: 2024GZGJ51,GD23XGL025,GZYZS2024XKG03,GZYZS2024G16
  funderid: 10.13039/501100006410
GroupedDBID .DC
6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-dbae06f6c3d0c03f745b5938fe88bc3f797a7a15f55e2173637e6a2164c9db693
IEDL.DBID RIE
IngestDate Wed Jul 23 05:50:29 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-dbae06f6c3d0c03f745b5938fe88bc3f797a7a15f55e2173637e6a2164c9db693
PageCount 6
ParticipantIDs ieee_primary_11072940
PublicationCentury 2000
PublicationDate 2025-April-18
PublicationDateYYYYMMDD 2025-04-18
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-18
  day: 18
PublicationDecade 2020
PublicationTitle International Conference on Control, Automation and Robotics : proceedings
PublicationTitleAbbrev ICCAR
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001366230
Score 1.9089113
Snippet Vignetting is a common phenomenon in photography and imaging. It is characterized by a degradation from center to edges. Vignetting can be caused by optical,...
SourceID ieee
SourceType Publisher
StartPage 452
SubjectTerms Image edge detection
Image enhancement
Integrated optics
Manuals
Network architecture
Neural networks
Optical computing
Optical imaging
Photography
Transformers
Vignetting removal
vision transformer
Title VHCFormer: Vignetting Removal Based on Hybrid Channel Transformer
URI https://ieeexplore.ieee.org/document/11072940
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7ak158VXyTg9fdpptsHt7qYlkFi5S29FayyayIuitle9Bfb7LtWhUEb3kQCDMDX75kvglCl4RZZqilATjsCHyEBJngeeCgmWoeGRPXqrT7AU_H7G4aT1di9VoLAwB18hmEvlm_5dvSLPxVWcdzlUgxx9A3heRLsdb6QoVyB-WkydYhqnObJL0hZw7xHA-M4rBZ_uMjlRpH-jto0OxgmT7yHC6qLDQfv4oz_nuLu6i9luzhhy8w2kMbUOyj7W_VBg9Qb5ImfXdEhfkVnjw9FlCnPOMhvJYu3PC1wzOLywKn717Fhb3uoIAXPGqOtjBvo3H_ZpSkweoHheCpK2QV2EwD4Tl33iCG0FywOIsVlTlImRnXV0IL3Y3zOAbHTSinAriOHIUyymZc0UPUKsoCjhB2FsyZ5cpNCaYioi2QPNIyUpITquUxantrzN6WRTJmjSFO_hg_RVveKf5hpivPUKuaL-Dc4XuVXdR-_QSRyqJF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA4yH9QXbxPv5sHXdllzaePbLI5OtyFjG3sbbXIqQ21ldA_660261akg-JYLhHDOgS9fcr4ThK4J00xRTR0w2OHYCHESX6SOgWYaC08pXqrSen0Rjdj9hE9WYvVSCwMAZfIZuLZZvuXrXC3sVVnDchVPMsPQNzljjC_lWusrFSoMmJMqX4fIRicMWwPBDOYZJuhxt1rgx1cqJZK0d1G_2sMygeTZXRSJqz5-lWf89yb3UH0t2sOPX3C0jzYgO0A73-oNHqLWOArb5pAK8xs8nj1lUCY94wG85ibg8K1BNI3zDEfvVseFrfIggxc8rA63MK-jUftuGEbO6g8FZ9b0g8LRSQxEpML4gyhCU5_xhEsapBAEiTJ96cd-3OQp52DYCRXUBxF7hkQpqRMh6RGqZXkGxwgbC6ZMC2mmfCY9EmsgqRcHngwEoXFwgurWGtO3ZZmMaWWI0z_Gr9BWNOx1p91O_-EMbVsH2WeaZnCOasV8ARcG7YvksvTxJ0SGpZI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Automation+and+Robotics+%3A+proceedings&rft.atitle=VHCFormer%3A+Vignetting+Removal+Based+on+Hybrid+Channel+Transformer&rft.au=Wu%2C+Juhua&rft.au=Li%2C+Siqi&rft.au=Chen%2C+Yijia&rft.au=Wu%2C+Shiting&rft.date=2025-04-18&rft.pub=IEEE&rft.eissn=2251-2454&rft.spage=452&rft.epage=457&rft_id=info:doi/10.1109%2FICCAR64901.2025.11072940&rft.externalDocID=11072940