HQC-Bend: A Python Package of Hybrid Quantum-Classical Multi-cuts Benders' Decomposition Algorithm

This article introduces the Hybrid Quantum-Classical Multi-Cut Benders' Decomposition (HQC-Bend) algorithm, an efficient, open-source Python script designed to tackle complex Mixed-Binary Linear Programming (MBLP) problems with a block structure by integrating quantum and classical computing me...

Full description

Saved in:
Bibliographic Details
Published in2025 International Conference on Quantum Communications, Networking, and Computing (QCNC) pp. 591 - 597
Main Authors Zhao, Zhongqi, Li, Mingze, Fan, Lei, Han, Zhu
Format Conference Proceeding
LanguageEnglish
Published IEEE 31.03.2025
Subjects
Online AccessGet full text
DOI10.1109/QCNC64685.2025.00098

Cover

Abstract This article introduces the Hybrid Quantum-Classical Multi-Cut Benders' Decomposition (HQC-Bend) algorithm, an efficient, open-source Python script designed to tackle complex Mixed-Binary Linear Programming (MBLP) problems with a block structure by integrating quantum and classical computing methods. HQC-Bend decomposes large MBLP models into a master problem and smaller, manageable subproblems, iteratively refining solutions to accelerate convergence. By leveraging quantum computing for specific computational tasks and classical methods for others, the algorithm significantly enhances efficiency. Supported by D-Wave for quantum solving and Gurobi for classical solving, the demonstration includes two primary modes of problem solving: a purely classical iteration and a hybrid quantum-classical approach. Experimental validations on real-world cases demonstrate the algorithm's effectiveness and offer practical insights, highlighting its potential for broad adoption across various topics and fields.
AbstractList This article introduces the Hybrid Quantum-Classical Multi-Cut Benders' Decomposition (HQC-Bend) algorithm, an efficient, open-source Python script designed to tackle complex Mixed-Binary Linear Programming (MBLP) problems with a block structure by integrating quantum and classical computing methods. HQC-Bend decomposes large MBLP models into a master problem and smaller, manageable subproblems, iteratively refining solutions to accelerate convergence. By leveraging quantum computing for specific computational tasks and classical methods for others, the algorithm significantly enhances efficiency. Supported by D-Wave for quantum solving and Gurobi for classical solving, the demonstration includes two primary modes of problem solving: a purely classical iteration and a hybrid quantum-classical approach. Experimental validations on real-world cases demonstrate the algorithm's effectiveness and offer practical insights, highlighting its potential for broad adoption across various topics and fields.
Author Li, Mingze
Han, Zhu
Fan, Lei
Zhao, Zhongqi
Author_xml – sequence: 1
  givenname: Zhongqi
  surname: Zhao
  fullname: Zhao, Zhongqi
  email: zzhao27@uh.edu
  organization: University of Houston,Department of Electrical and Computer Engineering,Houston,TX,USA
– sequence: 2
  givenname: Mingze
  surname: Li
  fullname: Li, Mingze
  email: mli39@uh.edu
  organization: University of Houston,Department of Electrical and Computer Engineering,Houston,TX,USA
– sequence: 3
  givenname: Lei
  surname: Fan
  fullname: Fan, Lei
  email: lfan8@uh.edu
  organization: University of Houston,Department of Electrical and Computer Engineering,Houston,TX,USA
– sequence: 4
  givenname: Zhu
  surname: Han
  fullname: Han, Zhu
  email: zhan2@uh.edu
  organization: University of Houston,Department of Electrical and Computer Engineering,Houston,TX,USA
BookMark eNotkLtOwzAYRo0EA5S-QQdvTCm_7fjGFgKlSAUaCebKsZ3WIpcqcYa8PUEgfdKZzhm-G3TZdq1HaEVgTQjo-yJ_z0UqFF9ToHwNAFpdoKWWWjFG-DxNrlG5LfLk0bfuAWd4P8VT1-K9sd_m6HFX4e1U9sHhYjRtHJskr80wBGtq_DbWMSR2jAP-tX0_3OEnb7vm3A0hhrmS1ceuD_HU3KKrytSDX_5zgb42z5_5Ntl9vLzm2S4JRKqYMMlUSWwKjhGQlCrJqeAWtODUAmPCl45XxgkinGPKSUY9065ypXG2SoEt0OqvG7z3h3MfGtNPh_kLACIl-wGL-1Jt
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/QCNC64685.2025.00098
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès UT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331531591
EndPage 597
ExternalDocumentID 11000177
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i178t-3738b1c40d310722875265c09652c0336ebd5fad616dd38d732e39dfdbadcf403
IEDL.DBID RIE
IngestDate Thu May 29 05:57:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-3738b1c40d310722875265c09652c0336ebd5fad616dd38d732e39dfdbadcf403
PageCount 7
ParticipantIDs ieee_primary_11000177
PublicationCentury 2000
PublicationDate 2025-March-31
PublicationDateYYYYMMDD 2025-03-31
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-31
  day: 31
PublicationDecade 2020
PublicationTitle 2025 International Conference on Quantum Communications, Networking, and Computing (QCNC)
PublicationTitleAbbrev QCNC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9069076
Snippet This article introduces the Hybrid Quantum-Classical Multi-Cut Benders' Decomposition (HQC-Bend) algorithm, an efficient, open-source Python script designed to...
SourceID ieee
SourceType Publisher
StartPage 591
SubjectTerms Benders'decomposition
Computational modeling
Convergence
Hybrid algorithm
Knowledge engineering
Linear programming
Mixed-binary linear programming
Optimization
Problem-solving
Python
Python package
Quantum communication
Quantum computing
Refining
Title HQC-Bend: A Python Package of Hybrid Quantum-Classical Multi-cuts Benders' Decomposition Algorithm
URI https://ieeexplore.ieee.org/document/11000177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDoKnbGmbJo23rTqKh7GBg91GflXHdJWtPcy_3iTtFAXBW8gl4b0k7yX5vu8BcGMIV1LwGCmbSyNi7E4XieQoz4UglOYs0R5tMaLZlDzO4llDVvdcGGOMB5-Zrmv6v3xdqMo9lfWcvJldQawFWiyhNVmrocMFmPcm6SilhCaxvfaF7qkE8-RH0RQfM4YHYLQbrYaKLLtVKbvq45cQ47-ncwg63_Q8OP4KPEdgz6yOgcwmKRqYlb6DfTjeOkkAOBZqac8LWOQw2zpqFpxU1pLVG_K1MJ1_oGfgIlWVGzjwZeU2t_DeOKR5A-eC_dfnYr0oX946YDp8eEoz1BRQQIuAJSVyqkUyUARrm8Sx0F6OnBi-coIvocJRRI3UcS40DajWUaJZFJqI61xLoVVOcHQC2qtiZU4BpJqQOBJMak6IiK07cchtroeNZCLA5gx0nIHm77VGxnxnm_M_-i_AvnNSze67BO1yXZkrG95Lee3d-gkxl6Xb
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDABoog3HpCY3ObhOAlbG6gClKiVWomt8itQlSaoTYby67GdFAQSEpvlxdad7Tvb3_cdAFcSh5zR0ENc5dIIS7XTacBClKaUYkJSPxAGbZGQeIwfnr3nmqxuuDBSSgM-ky3dNH_5Iuelfipra3kztYL8TbDlYYy9iq5VE-JsK2wPoyQimASeuvg5-rHECoMfZVNM1OjtgmQ9XgUWmbXKgrX4xy8pxn9PaA80vwl6cPAVevbBhswOAIuHEerKTNzADhystCgAHFA-UycGzFMYrzQ5Cw5LZctyjkw1TO0haDi4iJfFEnZNYbnlNbyVGmteA7pg5-0lX0yL13kTjHt3oyhGdQkFNLX9oEBat4jZHFtCpXG-o65HWg6fa8kXh1uuSyQTXkoFsYkQbiB815FuKFLBqOApttxD0MjyTB4BSISyuEt9JkKMqaccajmhyvYsyXxqW_IYNLWBJu-VSsZkbZuTP_ovwXY8eupP-vfJ4ynY0Q6ruH5noFEsSnmugn3BLoyLPwEROqko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Quantum+Communications%2C+Networking%2C+and+Computing+%28QCNC%29&rft.atitle=HQC-Bend%3A+A+Python+Package+of+Hybrid+Quantum-Classical+Multi-cuts+Benders%27+Decomposition+Algorithm&rft.au=Zhao%2C+Zhongqi&rft.au=Li%2C+Mingze&rft.au=Fan%2C+Lei&rft.au=Han%2C+Zhu&rft.date=2025-03-31&rft.pub=IEEE&rft.spage=591&rft.epage=597&rft_id=info:doi/10.1109%2FQCNC64685.2025.00098&rft.externalDocID=11000177