Novel L1-Based Neural Gas Clustering Algorithms

Clustering algorithms of the Neural Gas (NG) type take into consideration the dissimilarities between prototypes in the original input space. It has been successfully applied in vector quantization, topology creation as well as clustering. NG algorithms conventionally are based on the squared Euclid...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE International Conference on Emerging Technologies and Factory Automation) pp. 1232 - 1237
Main Authors Cavalcanti, Nico L., de A. T. de Carvalho, Francisco
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.12.2024
Subjects
Online AccessGet full text
ISSN1946-0759
DOI10.1109/ICMLA61862.2024.00191

Cover

Abstract Clustering algorithms of the Neural Gas (NG) type take into consideration the dissimilarities between prototypes in the original input space. It has been successfully applied in vector quantization, topology creation as well as clustering. NG algorithms conventionally are based on the squared Euclidean distance or L2 distance, which has several known setbacks (not robust to noise and outliers). Our goal is to introduce new NG clustering algorithms (online and batch) based on the L1 distance (more robust to noise and outliers). We propose three Neural Gas algorithms based on the L1 distance using two different algorithms to find the optimal prototypes and compare them with another well-known clustering algorithm. Given the experiments performed, the proposed methods showed a competitive performance. Preliminary results indicate that research on Neural Gas algorithms based on L1 distance is promising.
AbstractList Clustering algorithms of the Neural Gas (NG) type take into consideration the dissimilarities between prototypes in the original input space. It has been successfully applied in vector quantization, topology creation as well as clustering. NG algorithms conventionally are based on the squared Euclidean distance or L2 distance, which has several known setbacks (not robust to noise and outliers). Our goal is to introduce new NG clustering algorithms (online and batch) based on the L1 distance (more robust to noise and outliers). We propose three Neural Gas algorithms based on the L1 distance using two different algorithms to find the optimal prototypes and compare them with another well-known clustering algorithm. Given the experiments performed, the proposed methods showed a competitive performance. Preliminary results indicate that research on Neural Gas algorithms based on L1 distance is promising.
Author de A. T. de Carvalho, Francisco
Cavalcanti, Nico L.
Author_xml – sequence: 1
  givenname: Nico L.
  surname: Cavalcanti
  fullname: Cavalcanti, Nico L.
  email: nlcj@cin.ufpe.br
  organization: Universidade Federal de Pernambuco - UFPE,Centro de Informática - CIn,Recife,PE,Brazil,50.740 -540
– sequence: 2
  givenname: Francisco
  surname: de A. T. de Carvalho
  fullname: de A. T. de Carvalho, Francisco
  email: fatc@cin.ufpe.br
  organization: Universidade Federal de Pernambuco - UFPE,Centro de Informática - CIn,Recife,PE,Brazil,50.740 -540
BookMark eNotjstKw0AUQEdRsNb8gUJ-IOmdR2bmLmOwtRDrRtdlMnNbI2kimVTw7w3o6mwOh3PLrvqhJ8YeOOScA6621Utdam61yAUIlQNw5BcsQYNWFiCNshYv2YKj0hmYAm9YEuMnzB6gRokLttoN39SlNc8eXaSQ7ug8ui7duJhW3TlONLb9MS274zC208cp3rHrg-siJf9csvf101v1nNWvm21V1lnLjZ0yWXiC5uCFtNQYZzUUHsE3hsARCRXQWx-k0bMQDJJTlhyHEBooUHiQS3b_122JaP81tic3_uznbZBKovwFgk1Ghg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLA61862.2024.00191
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350374889
EISSN 1946-0759
EndPage 1237
ExternalDocumentID 10903439
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i178t-35ce0bfc238eb7a8605c90cb7e0aee24d9c8cd376238d79ea48ea10ddb0592c03
IEDL.DBID RIE
IngestDate Wed Mar 12 06:17:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-35ce0bfc238eb7a8605c90cb7e0aee24d9c8cd376238d79ea48ea10ddb0592c03
PageCount 6
ParticipantIDs ieee_primary_10903439
PublicationCentury 2000
PublicationDate 2024-Dec.-18
PublicationDateYYYYMMDD 2024-12-18
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-18
  day: 18
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation)
PublicationTitleAbbrev ICMLA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096939
Score 2.2796533
Snippet Clustering algorithms of the Neural Gas (NG) type take into consideration the dissimilarities between prototypes in the original input space. It has been...
SourceID ieee
SourceType Publisher
StartPage 1232
SubjectTerms batch neural gas
clustering
Clustering algorithms
Euclidean distance
l1 distance
Machine learning
Machine learning algorithms
median
Noise
Partitioning algorithms
Prototypes
Shape
Topology
Vector quantization
Title Novel L1-Based Neural Gas Clustering Algorithms
URI https://ieeexplore.ieee.org/document/10903439
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG6Ekyc1YtzTg9fCbHQ5IhHRAPEgCTfS5Y0SR4bAjAd_va8DiDEx8dY2bbol73tt3_eVkBs0im2dgGNRnHKWRKFlRiecWRU5HsSaq0q3YDji_XHyOGlPNmT1igsDAFXwGTR9snrLd7kt_VVZywcRxoigNVITkq_JWrsLFXTGVaw2LB3MtR66w0HH68F7wlXkVbJDL8X54xeVCkR6B2S07X4dO_LWLAvTtJ-_lBn_Pb5D0tjx9ejTNxIdkT2YH5PWKP-AjA5CdotI5aiX4dAZvdcr2s1Kr4-AdWkne8mXs-L1fdUg497dc7fPNt8jsFkoZMHitoXApBZBF4zQEg8mVgXWCAg0QJQ4ZaV1aECwghMKdCJBh4FzBl2qyAbxCanP8zmcEpo64ax1yoCU2E6i0RNp6r0HnqIL4M5Iw892ulgrYEy3Ez3_o_yC7PsV92Efobwk9WJZwhWCd2Guq037AnrzmI8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD3pSI8a3e_Ba2Ed3tz0iEUGXjQdIuJE-ZpW4goFdD_56pwuIMTHx1jbTpI9kvmk731dCbtAphpKBoX6QRZT5nqZKsohq4ZvIDWQkKt2Cfhp1h-xhFI5WZPWKCwMAVfIZNGyxess3M13aq7KmTSIMEEG3yU7IGAuXdK3NlQqG4yIQK54O1pq9dj9pWUV4S7nyrU62Z8U4f_yjUsFIZ5-k6wEss0deG2WhGvrzlzbjv0d4QOobxp7z9I1Fh2QLpkekmc4-IHcSj94iVhnHCnHI3LmXC6edl1YhAW2dVv48m0-Kl7dFnQw7d4N2l64-SKATL-YFDUINrso0wi6oWHI8mmjhahWDKwF8ZoTm2qALQQMTC5CMg_RcYxQGVb52g2NSm86mcEKczMRGayMUcI79OLq9OMts_BBlGASYU1K3sx2_LzUwxuuJnv3Rfk12u4N-Mk566eM52bOrb5NAPH5BasW8hEuE8kJdVRv4BawFm9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation%29&rft.atitle=Novel+L1-Based+Neural+Gas+Clustering+Algorithms&rft.au=Cavalcanti%2C+Nico+L.&rft.au=de+A.+T.+de+Carvalho%2C+Francisco&rft.date=2024-12-18&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=1232&rft.epage=1237&rft_id=info:doi/10.1109%2FICMLA61862.2024.00191&rft.externalDocID=10903439