Blind Residual CFO Estimation via CNN-Enabled EM Algorithm
Large residual carrier frequency offset (CFO) can severely degrade the performance of orthogonal frequency division multiplexing (OFDM) wireless communication systems when high-order modulations are adopted. In this paper, we propose a convolution neural network (CNN) enabled expectation-maximizatio...
        Saved in:
      
    
          | Published in | IEEE Vehicular Technology Conference pp. 1 - 5 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        24.06.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2577-2465 | 
| DOI | 10.1109/VTC2024-Spring62846.2024.10683526 | 
Cover
| Abstract | Large residual carrier frequency offset (CFO) can severely degrade the performance of orthogonal frequency division multiplexing (OFDM) wireless communication systems when high-order modulations are adopted. In this paper, we propose a convolution neural network (CNN) enabled expectation-maximization (EM) algorithm which can blindly estimate residual CFO without extra pilots. Specifically, we first show that the effects of the residual CFO can be depicted by the phase shift existing in the equalized signal. Based on this model, we design a simple CNN to get a rough estimate of the phase shift. The output of the CNN is further used to initialize an EM algorithm. With this fine initialization, the EM algorithm can iteratively seek better estimates of the phase shift induced by the residual CFO. The combination of CNN and EM algorithm simplifies neural network design while maintaining the accuracy of the estimation. Numerical simulations verify the efficiency of the proposed method. | 
    
|---|---|
| AbstractList | Large residual carrier frequency offset (CFO) can severely degrade the performance of orthogonal frequency division multiplexing (OFDM) wireless communication systems when high-order modulations are adopted. In this paper, we propose a convolution neural network (CNN) enabled expectation-maximization (EM) algorithm which can blindly estimate residual CFO without extra pilots. Specifically, we first show that the effects of the residual CFO can be depicted by the phase shift existing in the equalized signal. Based on this model, we design a simple CNN to get a rough estimate of the phase shift. The output of the CNN is further used to initialize an EM algorithm. With this fine initialization, the EM algorithm can iteratively seek better estimates of the phase shift induced by the residual CFO. The combination of CNN and EM algorithm simplifies neural network design while maintaining the accuracy of the estimation. Numerical simulations verify the efficiency of the proposed method. | 
    
| Author | Xue, Zhipeng Gao, Xiqi Wang, Yutao Cai, Penghao Yang, Fuqian Zhu, Hanyu  | 
    
| Author_xml | – sequence: 1 givenname: Penghao surname: Cai fullname: Cai, Penghao email: caipenghao@pmlabs.com.cn organization: Purple Mountain Laboratories,Nanjing,China,211100 – sequence: 2 givenname: Fuqian surname: Yang fullname: Yang, Fuqian email: yangfuqian@pmlabs.com.cn organization: Purple Mountain Laboratories,Nanjing,China,211100 – sequence: 3 givenname: Zhipeng surname: Xue fullname: Xue, Zhipeng email: xuezhipeng@pmlabs.com.cn organization: Purple Mountain Laboratories,Nanjing,China,211100 – sequence: 4 givenname: Yutao surname: Wang fullname: Wang, Yutao email: wangyutao@pmlabs.com.cn organization: Purple Mountain Laboratories,Nanjing,China,211100 – sequence: 5 givenname: Hanyu surname: Zhu fullname: Zhu, Hanyu email: zhuhanyu@pmlabs.com.cn organization: Purple Mountain Laboratories,Nanjing,China,211100 – sequence: 6 givenname: Xiqi surname: Gao fullname: Gao, Xiqi email: xqgao@seu.edu.cn organization: Purple Mountain Laboratories,Nanjing,China,211100  | 
    
| BookMark | eNo1T8FOwzAUCwgktrE_4JArh5QkTV5SbqPqAGlsEgyuU9q-jKAuRW1B4u8pAi62ZVmWPSUnsY1IyKXgiRA8u3rZ5pJLxZ7euxD3IK2C5MdIBAebaglHZJ6ZbJQ8tUYJdUwmUhvDpAJ9RqZ9_8Y5FwLkhFzfNCHW9BH7UH-4hubLDS36IRzcENpIP4Oj-XrNiujKBmtaPNBFs2-7MLwezsmpd02P8z-ekedlsc3v2Gpze58vViwIAwPzlTGyqq0FL7BCj6WwVQnjLCO55yNYq1AYZ5RCV45hSKWyADqrNGqfzsjFb29AxN34-eC6r93_1_QbtCdLtA | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/VTC2024-Spring62846.2024.10683526 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 9798350387414 | 
    
| EISSN | 2577-2465 | 
    
| EndPage | 5 | 
    
| ExternalDocumentID | 10683526 | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62301363 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | -~X 6IE 6IH ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO  | 
    
| ID | FETCH-LOGICAL-i176t-fc772cd886f1ecefeb18cb6414720f0720884e17a744eab772632486659c5e5f3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Tue May 06 03:32:53 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i176t-fc772cd886f1ecefeb18cb6414720f0720884e17a744eab772632486659c5e5f3 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_10683526 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-June-24 | 
    
| PublicationDateYYYYMMDD | 2024-06-24 | 
    
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-24 day: 24  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE Vehicular Technology Conference | 
    
| PublicationTitleAbbrev | VTC | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0001162 | 
    
| Score | 2.2624958 | 
    
| Snippet | Large residual carrier frequency offset (CFO) can severely degrade the performance of orthogonal frequency division multiplexing (OFDM) wireless communication... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | blind CFO estimation CNN EM algorithm Estimation Frequency modulation Neural networks Numerical simulation OFDM residue carrier frequency offset (CFO) synchronization Vehicular and wireless technologies Wireless communication  | 
    
| Title | Blind Residual CFO Estimation via CNN-Enabled EM Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/10683526 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhECa2B6MXXzW-w8GLB-qyZYH1ppttGpOuxrSmt4aFWW3U1tStB3-9wLb1kZh4IYQAmUCYGWC-bxA6pQFQYC5ORzhIDqUFUbKlSMRFLnQQq9hTKXUz3umz60E0mIPVPRYGAHzwGTRd1f_lm4meuacye8K5cxh4DdWE5BVYa6l2KeXhKjqbk2ie3_cSe69npHof41YLu4CEkDUXk_xIp-KtSXsDZQs5qiCSp-aszJv64xdF478F3USNL-Aevl2apC20AuNttP6Nc3AHXVxZx9LgO3jzMCyctG9was95BWHE7yOFkywjqcdUGZx28eXzw2Q6Kh9fGqjfTntJh8wTKJARFbwkhba-szZS8oKChsLqZalzzigTYVAEtpCSARVKMAYqt50debtjwIt1BFHR2kX18WQMewjbi09sqFQMTMFyo3LrGYGBKGR2nJ1_HzXcMgxfK46M4WIFDv5oP0RrfnsCTkJ2hOrldAbH1ryX-Ynf1k9Pc6Gt | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhECZaEx8XXzW-5eDFA-uyZdldb7rZpmq7GtOa3hoWZrVRW1O3Hvz1AtvWR2LihRACZAJhZoD5vkHomLpAgZk4ncBAcijNiQhrgvg8yALpRiKyVEqtlDc67KrrdydgdYuFAQAbfAaOqdq_fDWUY_NUpk84Nw4Dn0cLPmPML-FaM8VLKfcW0cmERvP0vh3rmz0j5QsZ13rYhCR4zJlO8yOhirUn9VWUTiUpw0ienHGROfLjF0njv0VdQ9Uv6B6-nRmldTQHgw208o11cBOdXWjXUuE7eLNALBzXb3CiT3oJYsTvfYHjNCWJRVUpnLTw-fPDcNQvHl-qqFNP2nGDTFIokD4NeEFyqb1nqcKQ5xQk5FozhzLjjLLAc3NXF2HIgAYiYAxEpjsb-nbDgRdJH_y8toUqg-EAthHWV59I0VAwUDnLlMi0bwQKfI_pcXr-HVQ1y9B7LVkyetMV2P2j_QgtNdqtZq95mV7voWW7VS4nHttHlWI0hgNt7Ivs0G7xJ_pLpPo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Vehicular+Technology+Conference&rft.atitle=Blind+Residual+CFO+Estimation+via+CNN-Enabled+EM+Algorithm&rft.au=Cai%2C+Penghao&rft.au=Yang%2C+Fuqian&rft.au=Xue%2C+Zhipeng&rft.au=Wang%2C+Yutao&rft.date=2024-06-24&rft.pub=IEEE&rft.eissn=2577-2465&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FVTC2024-Spring62846.2024.10683526&rft.externalDocID=10683526 |