Tina: Acceleration of Non-NN Signal Processing Algorithms Using NN Accelerators

This paper introduces TINA, a novel framework for implementing non Neural Network (NN) signal processing algorithms on NN accelerators such as GPUs, TPUs or FPGAs. The key to this approach is the concept of mapping mathematical and logic functions as a series of convolutional and fully connected lay...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1 - 6
Main Authors Boerkamp, Christiaan, Van der Vlugt, Steven, Al-Ars, Zaid
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.09.2024
Subjects
Online AccessGet full text
ISSN2161-0371
DOI10.1109/MLSP58920.2024.10734727

Cover

Abstract This paper introduces TINA, a novel framework for implementing non Neural Network (NN) signal processing algorithms on NN accelerators such as GPUs, TPUs or FPGAs. The key to this approach is the concept of mapping mathematical and logic functions as a series of convolutional and fully connected layers. By mapping functions into such a small sub stack ofNN layers, it becomes possible to execute non-NN algorithms on NN hardware (HW) accelerators efficiently, as well as to ensure the portability of TINA implementations to any platform that supports such NN accelerators. Results show that TINA is highly competitive vs alternative frame-works, specifically for complex functions with iterations. For a Polyphase Filter Bank use case TINA shows GPU speedups of up to 80x vs a CPU baseline with NumPy compared to 8x speedup achieved by alternative frameworks. The frame-work is open source and publicly available at httPs://github.com/ChristiaanBoe/TINA.
AbstractList This paper introduces TINA, a novel framework for implementing non Neural Network (NN) signal processing algorithms on NN accelerators such as GPUs, TPUs or FPGAs. The key to this approach is the concept of mapping mathematical and logic functions as a series of convolutional and fully connected layers. By mapping functions into such a small sub stack ofNN layers, it becomes possible to execute non-NN algorithms on NN hardware (HW) accelerators efficiently, as well as to ensure the portability of TINA implementations to any platform that supports such NN accelerators. Results show that TINA is highly competitive vs alternative frame-works, specifically for complex functions with iterations. For a Polyphase Filter Bank use case TINA shows GPU speedups of up to 80x vs a CPU baseline with NumPy compared to 8x speedup achieved by alternative frameworks. The frame-work is open source and publicly available at httPs://github.com/ChristiaanBoe/TINA.
Author Van der Vlugt, Steven
Al-Ars, Zaid
Boerkamp, Christiaan
Author_xml – sequence: 1
  givenname: Christiaan
  surname: Boerkamp
  fullname: Boerkamp, Christiaan
  organization: Delft University of Technology,Delft,CD,Netherlands,2628
– sequence: 2
  givenname: Steven
  surname: Van der Vlugt
  fullname: Van der Vlugt, Steven
  organization: ASTRON,Dwingeloo,PD,Netherlands,7991
– sequence: 3
  givenname: Zaid
  surname: Al-Ars
  fullname: Al-Ars, Zaid
  organization: Delft University of Technology,Delft,CD,Netherlands,2628
BookMark eNo9UNtqwzAU88YG67r8wWD-gWTHdhzHeytlN8jSQtvn4tgnmSG1R5KX_f3Cbk9CQhJC1-QixICE3DHIGAN9_1bttrLUHDIOPM8YKJErrs5IopUuhQShOJdwThacFSydKbsiyTj6BqRgIAtgC7LZ-2Ae6Mpa7HEwk4-BxpbWMaR1TXe-C6an2yFanIOho6u-i4Of3k8jPXwLs-s_HIfxhly2ph8x-cUlOTw97tcvabV5fl2vqtQzVUwpSq6sbVGVWrTGQM4cFFpbZ5uGN_M6p3ih0XFpJLqmdAqtVa4QqjQcQYsluf3p9Yh4_Bj8yQyfx78PxBc4jlL6
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MLSP58920.2024.10734727
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350372250
EISSN 2161-0371
EndPage 6
ExternalDocumentID 10734727
Genre orig-research
GroupedDBID 6IE
6IL
ABLEC
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IEGSK
RIE
RIL
ID FETCH-LOGICAL-i176t-e527ccfe7893faa041d0699cdcbb2b310d7269ed25a5edb8d7ecc7d6378a2e093
IEDL.DBID RIE
IngestDate Wed Nov 13 06:11:48 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-e527ccfe7893faa041d0699cdcbb2b310d7269ed25a5edb8d7ecc7d6378a2e093
PageCount 6
ParticipantIDs ieee_primary_10734727
PublicationCentury 2000
PublicationDate 2024-Sept.-22
PublicationDateYYYYMMDD 2024-09-22
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-22
  day: 22
PublicationDecade 2020
PublicationTitle 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP)
PublicationTitleAbbrev MLSP
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib053105601
ssib050693520
Score 2.2714038
Snippet This paper introduces TINA, a novel framework for implementing non Neural Network (NN) signal processing algorithms on NN accelerators such as GPUs, TPUs or...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
Convolution
Graphics processing units
HW accelerators
Limiting
Linear accelerators
Logic functions
Machine learning
Machine learning algorithms
Memory management
neural networks
Non-NN algorithms
Signal processing algorithms
Title Tina: Acceleration of Non-NN Signal Processing Algorithms Using NN Accelerators
URI https://ieeexplore.ieee.org/document/10734727
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ08qTvwmB6-tbZI2ibchjiGuDrbBbiNfnUNtZesu_vW-fk0UBG8l9IXwfi_83mvfL0HoxoowlFIBAkCfHqOx9iCJlZ4Kaai1ptKkZaE4SuLhjD3Oo3kjVq-0MM65qvnM-eVj9S_f5mZbfiqDHc4pA8LtoA4XcS3WaoMnCmIJycQu-CC2grLaaHq6wkDejp4m40hIEkBZSJjfzvbjXpWKVgYHKGkXVHeTvPrbQvvm89dZjf9e8SHqfSv48HjHTUdoz2XH6Hm6ytQd7hsDXFMjj_MUJ3nmJQmerJYQVLhRDoAV7r8t8_WqeHnf4KqzAMNbO-N8vemh2eBhej_0mgsVvFXI48JzEeHGpI5DkpIqFbDQgteksUZrosFhlgNOzpJIRc5qYTkAzG1MuVDEBZKeoG6WZ-4UYapJrFIoDp0wDMykooELA2qVSJlh4gz1Sm8sPuozMxatI87_GL9A-yUoZScGIZeoW6y37grovtDXFcxfJ0yntw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvSkYsW3e_CamOwjyXorYqnaxkJb6K3sK1rURNr04q938qooCN7CklmW-Wb5ZpL5dhG6MpHvCyEBAaBPh9FAOZDECkf61FdKUaGTolAcxEFvwh6mfFqL1UstjLW2bD6zbvFY_ss3mV4Vn8pgh4eUAeFuoi3OGOOVXKsJH-4FAtKJdfhBdHlFvVF3dfmeuB70R0MeCeJBYUiY28z342aVkli6uyhullT1k7y6q1y5-vPXaY3_XvMean9r-PBwzU77aMOmB-hpPE_lDe5oDWxTYY-zBMdZ6sQxHs2fIaxwrR0AK9x5e84W8_zlfYnL3gIMb62Ns8WyjSbdu_Ftz6mvVHDmfhjkjuUk1DqxIaQpiZQe8w14TWijlSIKHGZCQMoawiW3RkUmBIhDE9AwksR6gh6iVpql9ghhqkggEygPbaQZmAlJPet71MgoYZpFx6hdeGP2UZ2aMWsccfLH-CXa7o0H_Vn_Pn48RTsFQEVfBiFnqJUvVvYcyD9XFyXkXyFFqwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+34th+International+Workshop+on+Machine+Learning+for+Signal+Processing+%28MLSP%29&rft.atitle=Tina%3A+Acceleration+of+Non-NN+Signal+Processing+Algorithms+Using+NN+Accelerators&rft.au=Boerkamp%2C+Christiaan&rft.au=Van+der+Vlugt%2C+Steven&rft.au=Al-Ars%2C+Zaid&rft.date=2024-09-22&rft.pub=IEEE&rft.eissn=2161-0371&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP58920.2024.10734727&rft.externalDocID=10734727