LMS Quasi-Newton and RLS Algorithms with Sparsity-Aware Updates applied to Communications

In this paper, constrained optimization methods with a sparsity-aware Newton-type direction update are applied to adaptive filtering. Different versions of the proposed algorithms, which include a sparsity-aware RLS and a CG algorithm, present lower computational complexity than traditional algorith...

Full description

Saved in:
Bibliographic Details
Published inInternational Symposium on Wireless Communication Systems pp. 1 - 6
Main Authors Ferreira, Tadeu N., Lima, Markus V. S., de Campos, Marcello L. R., Diniz, Paulo S. R.
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.07.2024
Subjects
Online AccessGet full text
ISSN2154-0225
DOI10.1109/ISWCS61526.2024.10639168

Cover

Abstract In this paper, constrained optimization methods with a sparsity-aware Newton-type direction update are applied to adaptive filtering. Different versions of the proposed algorithms, which include a sparsity-aware RLS and a CG algorithm, present lower computational complexity than traditional algorithms based on LMS-Newton, since the proposed algorithms require the use of a smaller Hessian estimate. The proposed algorithms are tested in acoustic echo cancellation and time-varying channel identification. Some of them present a computational reduction of 25% of that of the traditional LMS-Newton in the best case scenario. Most of the proposed algorithms present faster convergence than the benchmark algorithms in several scenarios.
AbstractList In this paper, constrained optimization methods with a sparsity-aware Newton-type direction update are applied to adaptive filtering. Different versions of the proposed algorithms, which include a sparsity-aware RLS and a CG algorithm, present lower computational complexity than traditional algorithms based on LMS-Newton, since the proposed algorithms require the use of a smaller Hessian estimate. The proposed algorithms are tested in acoustic echo cancellation and time-varying channel identification. Some of them present a computational reduction of 25% of that of the traditional LMS-Newton in the best case scenario. Most of the proposed algorithms present faster convergence than the benchmark algorithms in several scenarios.
Author Diniz, Paulo S. R.
de Campos, Marcello L. R.
Lima, Markus V. S.
Ferreira, Tadeu N.
Author_xml – sequence: 1
  givenname: Tadeu N.
  surname: Ferreira
  fullname: Ferreira, Tadeu N.
  email: tadeu_ferreira@id.uff.br
  organization: Engineering School Fluminense Federal University (UFF),Niteroi,RJ,Brazil,Zip 24210-240
– sequence: 2
  givenname: Markus V. S.
  surname: Lima
  fullname: Lima, Markus V. S.
  email: markus.lima@smt.ufrj.br
  organization: Poli & COPPE Federal University of Rio de Janeiro (UFRJ),Rio de Janeiro,RJ,Brazil,Zip 21941-972
– sequence: 3
  givenname: Marcello L. R.
  surname: de Campos
  fullname: de Campos, Marcello L. R.
  email: campos@smt.ufrj.br
  organization: Poli & COPPE Federal University of Rio de Janeiro (UFRJ),Rio de Janeiro,RJ,Brazil,Zip 21941-972
– sequence: 4
  givenname: Paulo S. R.
  surname: Diniz
  fullname: Diniz, Paulo S. R.
  email: diniz@smt.ufrj.br
  organization: Poli & COPPE Federal University of Rio de Janeiro (UFRJ),Rio de Janeiro,RJ,Brazil,Zip 21941-972
BookMark eNo1kN1KwzAYQKMoOOfewIu8QOf3JWmSXo7iz6AqWod4NdIm1cj6Q5NR9vYOVDhw7s7FuSRnXd85QijCEhGym3X5npcSUyaXDJhYIkieodQnZJGpTPMUuGQpwimZMUxFAoylF2QRwjcAINPyyIx8FI8lfdmb4JMnN8W-o6az9LUo6Wr32Y8-frWBTkfRcjBj8PGQrCYzOroZrIkuUDMMO-8sjT3N-7bdd7420fdduCLnjdkFt_jznGzubt_yh6R4vl_nqyLxqGRMnGhUJiplpOW6BmOU5cicSjMugQuoKmEFKo4arRDQ8KwSutKm5iDqWjd8Tq5_u945tx1G35rxsP2_wX8AJphV8g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISWCS61526.2024.10639168
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès ENAC - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350362510
EISSN 2154-0225
EndPage 6
ExternalDocumentID 10639168
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i176t-e4f794b7a6d38c0aa7d312e759360340bb4d4173181d440f39b48b8ac304cc8f3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:32:28 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-e4f794b7a6d38c0aa7d312e759360340bb4d4173181d440f39b48b8ac304cc8f3
PageCount 6
ParticipantIDs ieee_primary_10639168
PublicationCentury 2000
PublicationDate 2024-July-14
PublicationDateYYYYMMDD 2024-07-14
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-14
  day: 14
PublicationDecade 2020
PublicationTitle International Symposium on Wireless Communication Systems
PublicationTitleAbbrev ISWCS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001286286
Score 1.8793736
Snippet In this paper, constrained optimization methods with a sparsity-aware Newton-type direction update are applied to adaptive filtering. Different versions of the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Acoustics
Adaptive filter
Benchmark testing
Echo cancellers
Filtering algorithms
LMS-Newton
Optimization methods
RLS
sparsity
Time-varying channels
Wireless communication
Title LMS Quasi-Newton and RLS Algorithms with Sparsity-Aware Updates applied to Communications
URI https://ieeexplore.ieee.org/document/10639168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uT_ribeKdPPia2jZpmz6O4ZiyDbUO59PIVYfajq1F8NebtKtuguBbEgiEHE7O4cv3nQPAhQq0DjSNUSyDABHmMRRrGSNGqK89SQjRVu88GIa9EbkZB-OlWL3UwiilSvKZcuyw_MuXmSgsVGY8PLQ6UdoAjYiGlVhrBVChVmZZs3Xc-PI6eewkJmL7lorgE6fevtZIpYwj3W0wrE9Q0UdenSLnjvj8VZzx30fcAa0fyR68_Q5Gu2BDpXtga6Xa4D546g8SeFewxRSZp83kfJClEt73E9h-e87m0_zlfQEtLguTGSu5Gqj9weYKjmYWFlhAVmWsMM_gmq5k0QKj7tVDp4eWnRXQ1IvCHCmijR_yiIUSU-EyFkns-Sqy7f1cTFzOiSReZPzdmsvVOOaEcsoEdokQVOMD0EyzVB0C6AeYM04D5saYcDMR5tFgypOC22SKHIGWvaXJrCqeMakv6PiP9ROwaY1l4VOPnIJmPi_UmYn7OT8v7f0FN-Gspg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDCq4g3Hlgd8rAbZ6wqqhbSCkgrYKrs2IYKSKomERK_HjtpoUVCYrM9WJZP5zt9_r47AC4kUYooGqBAEIIwcxgKlAgQw9RVjsAYK6N37vUbnSG-fiSPM7F6qYWRUpbkM2mZYfmXL9K4MFCZ9vCG0YnSVbBG9C6kkmstQCrUCC3nfB07uOxGD61Ix2zXkBFcbM03WGqlUkaS9hboz89QEUherSLnVvz5qzzjvw-5Deo_oj14-x2OdsCKTHbB5kK9wT3wFPYieFewbIz046azPsgSAe_DCDbfntPpOH95z6BBZmE0YSVbAzU_2FTC4cQAAxlkVc4K8xQuKUuyOhi2rwatDpr1VkBjx2_kSGKlPZH7rCE8GtuM-cJzXOmbBn-2h23OscCOrz3eGMxWXsAx5ZTFno3jmCpvH9SSNJEHALrE44xTwuzAw1xPYv1sMOmImJt0Ch-Curml0aQqnzGaX9DRH-vnYL0z6IWjsNu_OQYbxnAGTHXwCajl00Ke6iwg52el7b8Acrev8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Wireless+Communication+Systems&rft.atitle=LMS+Quasi-Newton+and+RLS+Algorithms+with+Sparsity-Aware+Updates+applied+to+Communications&rft.au=Ferreira%2C+Tadeu+N.&rft.au=Lima%2C+Markus+V.+S.&rft.au=de+Campos%2C+Marcello+L.+R.&rft.au=Diniz%2C+Paulo+S.+R.&rft.date=2024-07-14&rft.pub=IEEE&rft.eissn=2154-0225&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FISWCS61526.2024.10639168&rft.externalDocID=10639168