Enhancing Large Language Models with Knowledge Graphs for Robust Question Answering

In recent years, large language models (LLMs) have shown rapid development, becoming one of the most popular topics in the field of artificial intelligence. LLMs have demonstrated powerful generalization and learning capabilities, and their performance on various language tasks has been remarkable....

Full description

Saved in:
Bibliographic Details
Published inProceedings - International Conference on Parallel and Distributed Systems pp. 262 - 269
Main Authors Zhu, Zhui, Qi, Guangpeng, Shang, Guangyong, He, Qingfeng, Zhang, Weichen, Li, Ningbo, Chen, Yunzhi, Hu, Lijun, Zhang, Wenqiang, Dang, Fan
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.10.2024
Subjects
Online AccessGet full text
ISSN2690-5965
DOI10.1109/ICPADS63350.2024.00042

Cover

Abstract In recent years, large language models (LLMs) have shown rapid development, becoming one of the most popular topics in the field of artificial intelligence. LLMs have demonstrated powerful generalization and learning capabilities, and their performance on various language tasks has been remarkable. Despite their successes, LLMs face significant challenges, particularly in domain-specific tasks that require structured knowledge, often leading to issues such as hallucinations. To mitigate these challenges, we propose a novel system, SynaptiQA, which integrates LLMs with Knowledge Graphs (KGs) to answer more questions about knowledge. Our approach leverages the generative capabilities of LLMs to create and optimize KG queries, thereby improving the accuracy and contextual relevance of responses. Experimental results in an industrial data set demonstrate that SynaptiQA outperforms baseline models and naive retrieval-augmented generation (RAG) systems, demonstrating improved accuracy and reduced hallucinations. This integration of KGs with LLMs paves the way for more reliable and interpretable domain-specific question answering systems.
AbstractList In recent years, large language models (LLMs) have shown rapid development, becoming one of the most popular topics in the field of artificial intelligence. LLMs have demonstrated powerful generalization and learning capabilities, and their performance on various language tasks has been remarkable. Despite their successes, LLMs face significant challenges, particularly in domain-specific tasks that require structured knowledge, often leading to issues such as hallucinations. To mitigate these challenges, we propose a novel system, SynaptiQA, which integrates LLMs with Knowledge Graphs (KGs) to answer more questions about knowledge. Our approach leverages the generative capabilities of LLMs to create and optimize KG queries, thereby improving the accuracy and contextual relevance of responses. Experimental results in an industrial data set demonstrate that SynaptiQA outperforms baseline models and naive retrieval-augmented generation (RAG) systems, demonstrating improved accuracy and reduced hallucinations. This integration of KGs with LLMs paves the way for more reliable and interpretable domain-specific question answering systems.
Author Zhang, Wenqiang
Zhang, Weichen
Dang, Fan
Hu, Lijun
Shang, Guangyong
He, Qingfeng
Zhu, Zhui
Qi, Guangpeng
Chen, Yunzhi
Li, Ningbo
Author_xml – sequence: 1
  givenname: Zhui
  surname: Zhu
  fullname: Zhu, Zhui
  email: z-zhu22@mails.tsinghua.edu.cn
  organization: Tsinghua University,Department of Automation and BNRist
– sequence: 2
  givenname: Guangpeng
  surname: Qi
  fullname: Qi, Guangpeng
  email: qigp@inspur.com
  organization: Inspur Yunzhou Industrial Internet Co.,Ltd
– sequence: 3
  givenname: Guangyong
  surname: Shang
  fullname: Shang, Guangyong
  email: shangguangyong@inspur.com
  organization: Inspur Yunzhou Industrial Internet Co.,Ltd
– sequence: 4
  givenname: Qingfeng
  surname: He
  fullname: He, Qingfeng
  email: heqf21@mails.tsinghua.edu.cn
  organization: Tsinghua University,Department of Computer Science and Technology
– sequence: 5
  givenname: Weichen
  surname: Zhang
  fullname: Zhang, Weichen
  email: weic_zhang23@mails.tsinghua.edu.cn
  organization: Tsinghua University,Global Innovation Exchange
– sequence: 6
  givenname: Ningbo
  surname: Li
  fullname: Li, Ningbo
  email: lnb23@mails.tsinghua.edu.cn
  organization: Tsinghua University,Global Innovation Exchange
– sequence: 7
  givenname: Yunzhi
  surname: Chen
  fullname: Chen, Yunzhi
  email: chenyunzhi@inspur.com
  organization: Inspur Yunzhou Industrial Internet Co.,Ltd
– sequence: 8
  givenname: Lijun
  surname: Hu
  fullname: Hu, Lijun
  email: hljun@inspur.com
  organization: Inspur Yunzhou Industrial Internet Co.,Ltd
– sequence: 9
  givenname: Wenqiang
  surname: Zhang
  fullname: Zhang, Wenqiang
  email: zhangwq01@inspur.com
  organization: Inspur Yunzhou Industrial Internet Co.,Ltd
– sequence: 10
  givenname: Fan
  surname: Dang
  fullname: Dang, Fan
  email: dangfan@tsinghua.edu.cn
  organization: Tsinghua University,Global Innovation Exchange
BookMark eNotjttKAzEYhKMo2Na-gUheYNc_ySabXJZaa7HioXpdskn2IGtSNluKb29Ab2aGgfmYKbrwwTuEbgnkhIC62yxfF_c7wRiHnAItcgAo6Bmaq1JJxggnXAlxjiZUKMhS5ldoGuMXAIW0maDdyrfam843eKuHxiX1zVGn8Bys6yM-dWOLn3w49c6mdj3oQxtxHQb8HqpjHPHb0cWxCx4vfDy5IZGu0WWt--jm_z5Dnw-rj-Vjtn1Zb5aLbdaRUoyZrYypmQTLQVCqWaWsNdxSrtNpakoKhJeyLLiVhTKaa1EYxoykThjDpGEzdPPH7Zxz-8PQfevhZ0-gFIxLxX4BB0tTZA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPADS63350.2024.00042
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331515966
EISSN 2690-5965
EndPage 269
ExternalDocumentID 10763589
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i176t-dbccf380d50622a3b9ddc5d25a1592c7201578745d849ca5a64c33c82e6cc38c3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:59:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-dbccf380d50622a3b9ddc5d25a1592c7201578745d849ca5a64c33c82e6cc38c3
PageCount 8
ParticipantIDs ieee_primary_10763589
PublicationCentury 2000
PublicationDate 2024-Oct.-10
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-10
  day: 10
PublicationDecade 2020
PublicationTitle Proceedings - International Conference on Parallel and Distributed Systems
PublicationTitleAbbrev ICPADS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020350
Score 2.300612
Snippet In recent years, large language models (LLMs) have shown rapid development, becoming one of the most popular topics in the field of artificial intelligence....
SourceID ieee
SourceType Publisher
StartPage 262
SubjectTerms Accuracy
Artificial Intelligence
Cognition
Data models
Distributed databases
Faces
Knowledge Graph
Knowledge graphs
Large Language Model
Large language models
Question answering (information retrieval)
Reliability
Vectors
Title Enhancing Large Language Models with Knowledge Graphs for Robust Question Answering
URI https://ieeexplore.ieee.org/document/10763589
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uTz7Ny8Q7efC1s03TNHkcc3PexnAO9jbSk1RF6cS2CP56k7SdKAi-hBICDTkczvX7DkJnvol6lJCxR6VIPWoOeYKKwNMkkSmkKUBiK7p3Ezae0-tFtKjB6g4Lo7V2zWe6Zz9dLV-toLSpMqPhlj6NixZqxZxVYK11dGVLZDUEOPDF-dVg2r-YsdDsmiiQUEfLSX7MUHEmZNRBk-bnVefIS68skh58_uJl_PfttlD3G62Hp2s7tI02dLaDOs24Blxr7y6aDbMny66RPeJb2_9t1ipXie1AtNcc25wsvmmSbPjSclnn2Hi1-H6VlHmBXXbUCBL3s_zDcRh20Xw0fBiMvXqmgvccxKzwVAKQhtxXkc8IkWEilIJIkUgav4ZAbPwBq8M0UpwKkJFkFMIQONEMIOQQ7qF2tsr0PsJUc2V5rgkYE6d8yXWghHHZEpIyrnx6gLr2kZZvFW3Gsnmfwz_2j9CmFZQ1DIF_jNrFe6lPjMUvklMn6S83RKv6
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H_RpXibezYOvnW2adMnjmJubuzDcBnsbuVVF6cS2CP56k7RVFARfQgmBhhwO5_p9B4Ar30Q9ivGWhzmLPWwOeQyzwNNI8FjGsZTCVnTHk6i_wHdLsizB6g4Lo7V2zWe6aT9dLV-tZW5TZUbDLX0aZZtgi2CMSQHX-oqvbJGsBAEHPrsedKbtm1kUml0TByLsiDnRjykqzoj06mBS_b7oHXlu5ployo9fzIz_vt8uaHzj9eD0yxLtgQ2d7IN6NbABlvp7AGbd5NHyayQPcGQ7wM1aZCuhHYn2kkKblYXDKs0Gby2bdQqNXwvv1yJPM-jyo0aUsJ2k747FsAEWve680_fKqQreU9CKMk8JKeOQ-or4EUI8FEwpSRQi3Hg2SLaMR2C1GBNFMZOc8AjLMJQU6UjKkMrwENSSdaKPAMSaKst0jaQxcsrnVAeKGadNoDiiysfHoGEfafVaEGesqvc5-WP_Emz35-PRajSYDE_BjhWaNROBfwZq2Vuuz439z8SFk_onaTqvRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Parallel+and+Distributed+Systems&rft.atitle=Enhancing+Large+Language+Models+with+Knowledge+Graphs+for+Robust+Question+Answering&rft.au=Zhu%2C+Zhui&rft.au=Qi%2C+Guangpeng&rft.au=Shang%2C+Guangyong&rft.au=He%2C+Qingfeng&rft.date=2024-10-10&rft.pub=IEEE&rft.eissn=2690-5965&rft.spage=262&rft.epage=269&rft_id=info:doi/10.1109%2FICPADS63350.2024.00042&rft.externalDocID=10763589