Unlocking Past Information: Temporal Embeddings in Cooperative Bird's Eye View Prediction

Accurate and comprehensive Bird's Eye View (BEV) semantic segmentation is essential for ensuring safe and proactive navigation in autonomous driving. Although cooperative perception has exceeded the detection capabilities of single-agent systems, prevalent camera-based algorithms in cooperative...

Full description

Saved in:
Bibliographic Details
Published inIEEE Intelligent Vehicles Symposium pp. 2220 - 2225
Main Authors Rosle, Dominik, Gerner, Jeremias, Bogenberger, Klaus, Cremers, Daniel, Schmidtner, Stefanie, Schon, Torsten
Format Conference Proceeding
LanguageEnglish
Published IEEE 02.06.2024
Subjects
Online AccessGet full text
ISSN2642-7214
DOI10.1109/IV55156.2024.10588608

Cover

Abstract Accurate and comprehensive Bird's Eye View (BEV) semantic segmentation is essential for ensuring safe and proactive navigation in autonomous driving. Although cooperative perception has exceeded the detection capabilities of single-agent systems, prevalent camera-based algorithms in cooperative perception neglect valuable information derived from historical observations. This limitation becomes critical during sensor failures or communication issues as cooperative perception reverts to single-agent perception, leading to degraded performance and incomplete BEV segmentation maps. This paper introduces TempCoBEV, a temporal module designed to incorporate historical cues into current observations, thereby improving the quality and reliability of BEV map segmentations. We propose an importance-guided attention architecture to effectively integrate temporal information that prioritizes relevant properties for BEV map segmentation. TempCoBEV is an independent temporal module that seamlessly integrates into state-of-the-art camera-based cooperative perception models. We demonstrate through extensive experiments on the OPV2V dataset that TempCoBEV performs better than non-temporal models in predicting current and future BEV map segmentations, particularly in scenarios involving communication failures. We show the efficacy of TempCoBEV and its capability to integrate historical cues into the current BEV map, improving predictions under optimal communication conditions by up to 2% and under communication failures by up to 19%. The code is available at https://github.com/cvims/TempCoBEV.
AbstractList Accurate and comprehensive Bird's Eye View (BEV) semantic segmentation is essential for ensuring safe and proactive navigation in autonomous driving. Although cooperative perception has exceeded the detection capabilities of single-agent systems, prevalent camera-based algorithms in cooperative perception neglect valuable information derived from historical observations. This limitation becomes critical during sensor failures or communication issues as cooperative perception reverts to single-agent perception, leading to degraded performance and incomplete BEV segmentation maps. This paper introduces TempCoBEV, a temporal module designed to incorporate historical cues into current observations, thereby improving the quality and reliability of BEV map segmentations. We propose an importance-guided attention architecture to effectively integrate temporal information that prioritizes relevant properties for BEV map segmentation. TempCoBEV is an independent temporal module that seamlessly integrates into state-of-the-art camera-based cooperative perception models. We demonstrate through extensive experiments on the OPV2V dataset that TempCoBEV performs better than non-temporal models in predicting current and future BEV map segmentations, particularly in scenarios involving communication failures. We show the efficacy of TempCoBEV and its capability to integrate historical cues into the current BEV map, improving predictions under optimal communication conditions by up to 2% and under communication failures by up to 19%. The code is available at https://github.com/cvims/TempCoBEV.
Author Bogenberger, Klaus
Cremers, Daniel
Schmidtner, Stefanie
Rosle, Dominik
Schon, Torsten
Gerner, Jeremias
Author_xml – sequence: 1
  givenname: Dominik
  surname: Rosle
  fullname: Rosle, Dominik
  email: dominik.roessle@thi.de
  organization: Technische Hochschule Ingolstadt,Department of Computer Science and AImotion Bavaria,Ingolstadt,Germany,85049
– sequence: 2
  givenname: Jeremias
  surname: Gerner
  fullname: Gerner, Jeremias
  email: jeremias.gerner@thi.de
  organization: Technische Hochschule Ingolstadt,Department of Electrical Engineering and AImotion Bavaria,Ingolstadt,Germany,85049
– sequence: 3
  givenname: Klaus
  surname: Bogenberger
  fullname: Bogenberger, Klaus
  email: klaus.bogenberger@tum.de
  organization: Technical University of Munich,School of Engineering and Design,München,Germany,80333
– sequence: 4
  givenname: Daniel
  surname: Cremers
  fullname: Cremers, Daniel
  email: cremers@tum.de
  organization: Technical University of Munich,School of Computation, Information and Technology,Garching,Germany,85748
– sequence: 5
  givenname: Stefanie
  surname: Schmidtner
  fullname: Schmidtner, Stefanie
  email: stefanie.schmidtner@thi.de
  organization: Technische Hochschule Ingolstadt,Department of Electrical Engineering and AImotion Bavaria,Ingolstadt,Germany,85049
– sequence: 6
  givenname: Torsten
  surname: Schon
  fullname: Schon, Torsten
  email: torsten.schoen@thi.de
  organization: Technische Hochschule Ingolstadt,Department of Computer Science and AImotion Bavaria,Ingolstadt,Germany,85049
BookMark eNo1kFFLwzAUhaMouM39A4W8-dR6b5q0qW86phYG7mEb-DSy9Faia1LSoezfW1Gfzst3PjhnzM588MTYNUKKCOVttVEKVZ4KEDJFUFrnoE_YtCxKnSnIpNaIp2wkcimSQqC8YOO-fwdQSggcsde13wf74fwbX5r-wCvfhNiagwv-jq-o7UI0ez5vd1TXA9Rz5_kshI7iwHwSf3Cxvun5_Eh84-iLLyPVzv7UL9l5Y_Y9Tf9ywtaP89XsOVm8PFWz-0XisMgPiW0UUgYCdjJXpApFGkpEq4qctJASSEJjtCAYJqExmUWLGgsyTY22ttmEXf16HRFtu-haE4_b_yuyb5B1VKo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IV55156.2024.10588608
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350348811
EISSN 2642-7214
EndPage 2225
ExternalDocumentID 10588608
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i176t-cf51e3020b465e575e80911c576e82440e40fa82e09791aa3c1c1817eafd1cdc3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:02:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-cf51e3020b465e575e80911c576e82440e40fa82e09791aa3c1c1817eafd1cdc3
PageCount 6
ParticipantIDs ieee_primary_10588608
PublicationCentury 2000
PublicationDate 2024-June-2
PublicationDateYYYYMMDD 2024-06-02
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-2
  day: 02
PublicationDecade 2020
PublicationTitle IEEE Intelligent Vehicles Symposium
PublicationTitleAbbrev IV
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0055221
Score 2.2671793
Snippet Accurate and comprehensive Bird's Eye View (BEV) semantic segmentation is essential for ensuring safe and proactive navigation in autonomous driving. Although...
SourceID ieee
SourceType Publisher
StartPage 2220
SubjectTerms Accuracy
Autonomous vehicles
Codes
Navigation
Predictive models
Reliability engineering
Semantic segmentation
Title Unlocking Past Information: Temporal Embeddings in Cooperative Bird's Eye View Prediction
URI https://ieeexplore.ieee.org/document/10588608
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66J33xNvFOHgSfWps2aVMfHRtTcOxhG_NppMkJFLUdW4vorzfpxRsIvpVCOCWH5Puac74vCF1akutHUjkxo8qhVClHKBY6PFQBl15CRGLFyQ-jcDil93M2b8TqlRYGAKrmM3DtY1XLV7ks7VGZWeGM89BKezcjHtZirXbbZYZIkEaiQ7z4-m5muACzTQg-dduBP65QqRBksINGbey6ceTJLYvEle-_bBn__XG7qPsl1sPjTxjaQxuQ7aPtbz6DB-hxmhnMsofieCzWBW40SDYnN3hSm1M94_5LAqoqReE0w708X0JtC45v05W6WuP-G-BZCq8mnC3v2OFdNB30J72h09yp4KQkCgtHakYgMBwxoSEDw9WAG8ZApPntAG6g3gPqacF98OIoJkIEkkhDAiIQWhGpZHCIOlmewRHCRPuEChp5PjAaaR2D0pTHWsRCJ4J6x6hrZ2mxrG0zFu0Enfzx_hRt2WRVfVj-GeoUqxLODeIXyUWV6Q9D36uG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6iD-qLt4l38yD41Nq0SS8-OjY23cYetjGfRpqcQFHbsXWI_nqTXryB4FsphFNySL6vOef7gtCVIbluIKQVMSotSqW0uGS-FfrSC4UTEx4bcXJ_4HfG9H7KppVYvdDCAEDRfAa2eSxq-TITK3NUplc4C0PfSHs3GKWUlXKteuNlmkqQSqRDnOimO9FsgJk2BJfa9dAfl6gUGNLeQYM6etk68mSv8tgW77-MGf_9ebuo8SXXw8NPINpDa5Duo-1vToMH6HGcatQyx-J4yJc5rlRIJiu3eFTaUz3j1ksMsihG4STFzSybQ2kMju-Shbxe4tYb4EkCrzqcKfCY4Q00brdGzY5V3apgJSTwc0soRsDTLDGmPgPN1iDUnIEI_eMBoQZ7B6ijeOiCEwUR4dwTRGgaEABXkggpvEO0nmYpHCFMlEsop4HjAqOBUhFIRcNI8YirmFPnGDXMLM3mpXHGrJ6gkz_eX6LNzqjfm_W6g4dTtGUSV3RluWdoPV-s4Fzjfx5fFFn_AG57rtM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Intelligent+Vehicles+Symposium&rft.atitle=Unlocking+Past+Information%3A+Temporal+Embeddings+in+Cooperative+Bird%27s+Eye+View+Prediction&rft.au=Rosle%2C+Dominik&rft.au=Gerner%2C+Jeremias&rft.au=Bogenberger%2C+Klaus&rft.au=Cremers%2C+Daniel&rft.date=2024-06-02&rft.pub=IEEE&rft.eissn=2642-7214&rft.spage=2220&rft.epage=2225&rft_id=info:doi/10.1109%2FIV55156.2024.10588608&rft.externalDocID=10588608