Unlocking Past Information: Temporal Embeddings in Cooperative Bird's Eye View Prediction
Accurate and comprehensive Bird's Eye View (BEV) semantic segmentation is essential for ensuring safe and proactive navigation in autonomous driving. Although cooperative perception has exceeded the detection capabilities of single-agent systems, prevalent camera-based algorithms in cooperative...
Saved in:
| Published in | IEEE Intelligent Vehicles Symposium pp. 2220 - 2225 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
02.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2642-7214 |
| DOI | 10.1109/IV55156.2024.10588608 |
Cover
| Abstract | Accurate and comprehensive Bird's Eye View (BEV) semantic segmentation is essential for ensuring safe and proactive navigation in autonomous driving. Although cooperative perception has exceeded the detection capabilities of single-agent systems, prevalent camera-based algorithms in cooperative perception neglect valuable information derived from historical observations. This limitation becomes critical during sensor failures or communication issues as cooperative perception reverts to single-agent perception, leading to degraded performance and incomplete BEV segmentation maps. This paper introduces TempCoBEV, a temporal module designed to incorporate historical cues into current observations, thereby improving the quality and reliability of BEV map segmentations. We propose an importance-guided attention architecture to effectively integrate temporal information that prioritizes relevant properties for BEV map segmentation. TempCoBEV is an independent temporal module that seamlessly integrates into state-of-the-art camera-based cooperative perception models. We demonstrate through extensive experiments on the OPV2V dataset that TempCoBEV performs better than non-temporal models in predicting current and future BEV map segmentations, particularly in scenarios involving communication failures. We show the efficacy of TempCoBEV and its capability to integrate historical cues into the current BEV map, improving predictions under optimal communication conditions by up to 2% and under communication failures by up to 19%. The code is available at https://github.com/cvims/TempCoBEV. |
|---|---|
| AbstractList | Accurate and comprehensive Bird's Eye View (BEV) semantic segmentation is essential for ensuring safe and proactive navigation in autonomous driving. Although cooperative perception has exceeded the detection capabilities of single-agent systems, prevalent camera-based algorithms in cooperative perception neglect valuable information derived from historical observations. This limitation becomes critical during sensor failures or communication issues as cooperative perception reverts to single-agent perception, leading to degraded performance and incomplete BEV segmentation maps. This paper introduces TempCoBEV, a temporal module designed to incorporate historical cues into current observations, thereby improving the quality and reliability of BEV map segmentations. We propose an importance-guided attention architecture to effectively integrate temporal information that prioritizes relevant properties for BEV map segmentation. TempCoBEV is an independent temporal module that seamlessly integrates into state-of-the-art camera-based cooperative perception models. We demonstrate through extensive experiments on the OPV2V dataset that TempCoBEV performs better than non-temporal models in predicting current and future BEV map segmentations, particularly in scenarios involving communication failures. We show the efficacy of TempCoBEV and its capability to integrate historical cues into the current BEV map, improving predictions under optimal communication conditions by up to 2% and under communication failures by up to 19%. The code is available at https://github.com/cvims/TempCoBEV. |
| Author | Bogenberger, Klaus Cremers, Daniel Schmidtner, Stefanie Rosle, Dominik Schon, Torsten Gerner, Jeremias |
| Author_xml | – sequence: 1 givenname: Dominik surname: Rosle fullname: Rosle, Dominik email: dominik.roessle@thi.de organization: Technische Hochschule Ingolstadt,Department of Computer Science and AImotion Bavaria,Ingolstadt,Germany,85049 – sequence: 2 givenname: Jeremias surname: Gerner fullname: Gerner, Jeremias email: jeremias.gerner@thi.de organization: Technische Hochschule Ingolstadt,Department of Electrical Engineering and AImotion Bavaria,Ingolstadt,Germany,85049 – sequence: 3 givenname: Klaus surname: Bogenberger fullname: Bogenberger, Klaus email: klaus.bogenberger@tum.de organization: Technical University of Munich,School of Engineering and Design,München,Germany,80333 – sequence: 4 givenname: Daniel surname: Cremers fullname: Cremers, Daniel email: cremers@tum.de organization: Technical University of Munich,School of Computation, Information and Technology,Garching,Germany,85748 – sequence: 5 givenname: Stefanie surname: Schmidtner fullname: Schmidtner, Stefanie email: stefanie.schmidtner@thi.de organization: Technische Hochschule Ingolstadt,Department of Electrical Engineering and AImotion Bavaria,Ingolstadt,Germany,85049 – sequence: 6 givenname: Torsten surname: Schon fullname: Schon, Torsten email: torsten.schoen@thi.de organization: Technische Hochschule Ingolstadt,Department of Computer Science and AImotion Bavaria,Ingolstadt,Germany,85049 |
| BookMark | eNo1kFFLwzAUhaMouM39A4W8-dR6b5q0qW86phYG7mEb-DSy9Faia1LSoezfW1Gfzst3PjhnzM588MTYNUKKCOVttVEKVZ4KEDJFUFrnoE_YtCxKnSnIpNaIp2wkcimSQqC8YOO-fwdQSggcsde13wf74fwbX5r-wCvfhNiagwv-jq-o7UI0ez5vd1TXA9Rz5_kshI7iwHwSf3Cxvun5_Eh84-iLLyPVzv7UL9l5Y_Y9Tf9ywtaP89XsOVm8PFWz-0XisMgPiW0UUgYCdjJXpApFGkpEq4qctJASSEJjtCAYJqExmUWLGgsyTY22ttmEXf16HRFtu-haE4_b_yuyb5B1VKo |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IV55156.2024.10588608 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798350348811 |
| EISSN | 2642-7214 |
| EndPage | 2225 |
| ExternalDocumentID | 10588608 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i176t-cf51e3020b465e575e80911c576e82440e40fa82e09791aa3c1c1817eafd1cdc3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:02:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-cf51e3020b465e575e80911c576e82440e40fa82e09791aa3c1c1817eafd1cdc3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10588608 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-June-2 |
| PublicationDateYYYYMMDD | 2024-06-02 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-2 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Intelligent Vehicles Symposium |
| PublicationTitleAbbrev | IV |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0055221 |
| Score | 2.2671793 |
| Snippet | Accurate and comprehensive Bird's Eye View (BEV) semantic segmentation is essential for ensuring safe and proactive navigation in autonomous driving. Although... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2220 |
| SubjectTerms | Accuracy Autonomous vehicles Codes Navigation Predictive models Reliability engineering Semantic segmentation |
| Title | Unlocking Past Information: Temporal Embeddings in Cooperative Bird's Eye View Prediction |
| URI | https://ieeexplore.ieee.org/document/10588608 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66J33xNvFOHgSfWps2aVMfHRtTcOxhG_NppMkJFLUdW4vorzfpxRsIvpVCOCWH5Puac74vCF1akutHUjkxo8qhVClHKBY6PFQBl15CRGLFyQ-jcDil93M2b8TqlRYGAKrmM3DtY1XLV7ks7VGZWeGM89BKezcjHtZirXbbZYZIkEaiQ7z4-m5muACzTQg-dduBP65QqRBksINGbey6ceTJLYvEle-_bBn__XG7qPsl1sPjTxjaQxuQ7aPtbz6DB-hxmhnMsofieCzWBW40SDYnN3hSm1M94_5LAqoqReE0w708X0JtC45v05W6WuP-G-BZCq8mnC3v2OFdNB30J72h09yp4KQkCgtHakYgMBwxoSEDw9WAG8ZApPntAG6g3gPqacF98OIoJkIEkkhDAiIQWhGpZHCIOlmewRHCRPuEChp5PjAaaR2D0pTHWsRCJ4J6x6hrZ2mxrG0zFu0Enfzx_hRt2WRVfVj-GeoUqxLODeIXyUWV6Q9D36uG |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6iD-qLt4l38yD41Nq0SS8-OjY23cYetjGfRpqcQFHbsXWI_nqTXryB4FsphFNySL6vOef7gtCVIbluIKQVMSotSqW0uGS-FfrSC4UTEx4bcXJ_4HfG9H7KppVYvdDCAEDRfAa2eSxq-TITK3NUplc4C0PfSHs3GKWUlXKteuNlmkqQSqRDnOimO9FsgJk2BJfa9dAfl6gUGNLeQYM6etk68mSv8tgW77-MGf_9ebuo8SXXw8NPINpDa5Duo-1vToMH6HGcatQyx-J4yJc5rlRIJiu3eFTaUz3j1ksMsihG4STFzSybQ2kMju-Shbxe4tYb4EkCrzqcKfCY4Q00brdGzY5V3apgJSTwc0soRsDTLDGmPgPN1iDUnIEI_eMBoQZ7B6ijeOiCEwUR4dwTRGgaEABXkggpvEO0nmYpHCFMlEsop4HjAqOBUhFIRcNI8YirmFPnGDXMLM3mpXHGrJ6gkz_eX6LNzqjfm_W6g4dTtGUSV3RluWdoPV-s4Fzjfx5fFFn_AG57rtM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Intelligent+Vehicles+Symposium&rft.atitle=Unlocking+Past+Information%3A+Temporal+Embeddings+in+Cooperative+Bird%27s+Eye+View+Prediction&rft.au=Rosle%2C+Dominik&rft.au=Gerner%2C+Jeremias&rft.au=Bogenberger%2C+Klaus&rft.au=Cremers%2C+Daniel&rft.date=2024-06-02&rft.pub=IEEE&rft.eissn=2642-7214&rft.spage=2220&rft.epage=2225&rft_id=info:doi/10.1109%2FIV55156.2024.10588608&rft.externalDocID=10588608 |