Segmentation-Based Approach for a Heuristic Grasping Procedure in Multi-Object Scenes

Object manipulation in unstructured environments is important for many industrial applications where the items vary in shape, size, and material. This paper introduces a two-step pipeline for object picking, which combines instance segmentation with a heuristic based grasp point selection. The grasp...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE International Conference on Emerging Technologies and Factory Automation) pp. 1 - 4
Main Authors Ceschini, Davide, Cesare, Riccardo De, Civitelli, Enrico, Indri, Marina
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.09.2024
Subjects
Online AccessGet full text
ISSN1946-0759
DOI10.1109/ETFA61755.2024.10711021

Cover

Abstract Object manipulation in unstructured environments is important for many industrial applications where the items vary in shape, size, and material. This paper introduces a two-step pipeline for object picking, which combines instance segmentation with a heuristic based grasp point selection. The grasping points are determined using the 2D segmentation masks and depth images. A voxel-downsampling procedure reduces the depth noise, and the Theil-Sen algorithm ensures a robust linear regression for the grasping attitude determination. Unlike other methods, our approach does not require extensive training, as well as a fine labelled dataset for picking, and hence it is also independent of object shapes. Using SAM's ViT-h version and a binary object detector trained on a large dataset, our method is robust and class agnostic. The experiments, made using a RealSense D435i camera and a Racer 3 manipulator, show that our pipeline has a good success rate in simple and moderately complex scenarios, balancing computational efficiency and accu-racy.
AbstractList Object manipulation in unstructured environments is important for many industrial applications where the items vary in shape, size, and material. This paper introduces a two-step pipeline for object picking, which combines instance segmentation with a heuristic based grasp point selection. The grasping points are determined using the 2D segmentation masks and depth images. A voxel-downsampling procedure reduces the depth noise, and the Theil-Sen algorithm ensures a robust linear regression for the grasping attitude determination. Unlike other methods, our approach does not require extensive training, as well as a fine labelled dataset for picking, and hence it is also independent of object shapes. Using SAM's ViT-h version and a binary object detector trained on a large dataset, our method is robust and class agnostic. The experiments, made using a RealSense D435i camera and a Racer 3 manipulator, show that our pipeline has a good success rate in simple and moderately complex scenarios, balancing computational efficiency and accu-racy.
Author Civitelli, Enrico
Cesare, Riccardo De
Indri, Marina
Ceschini, Davide
Author_xml – sequence: 1
  givenname: Davide
  surname: Ceschini
  fullname: Ceschini, Davide
  email: ceschinidavide@gmail.com
  organization: DET - Politecnico di Torino,Torino,Italy
– sequence: 2
  givenname: Riccardo De
  surname: Cesare
  fullname: Cesare, Riccardo De
  email: riccardo.decesare@comau.com
  organization: Comau S.p.A.,Grugliasco,TO,Italy
– sequence: 3
  givenname: Enrico
  surname: Civitelli
  fullname: Civitelli, Enrico
  email: enrico.civitelli@comau.com
  organization: Cognitive Robotics - Comau S.p.A.,Grugliasco,TO,Italy
– sequence: 4
  givenname: Marina
  surname: Indri
  fullname: Indri, Marina
  email: marina.indri@polito.it
  organization: DET - Politecnico di Torino,Torino,Italy
BookMark eNo1kF9LwzAUxaMoOGe_gWC-QOe9TZsuj3PsjzCZsO15pMntzNjSkrQPfnsL6tPhHDgHfueR3fnGE2MvCBNEUK-L_XImsSyKSQZZPkEohzjDG5aoUk1FAUJiJuCWjVDlMoWyUA8sifEMAENfKqFG7LCj05V8pzvX-PRNR7J81rah0eaL103gmq-pDy52zvBV0LF1_sQ_Q2PI9oG48_yjv3Qu3VZnMh3fGfIUn9h9rS-Rkj8ds8NysZ-v08129T6fbVKHpexSQxUZI0DXaKbWamtqFFjVRLmtCwN2cPmAUEhhp5hLtAMgZFoT6FxlRozZ8--uI6JjG9xVh-_j_xPiB94vVV4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ETFA61755.2024.10711021
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350361230
EISSN 1946-0759
EndPage 4
ExternalDocumentID 10711021
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i176t-cebecc30af1c8ddadcf131bfee4df5c0d1314230563d81461d10202aae0a492c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:16:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-cebecc30af1c8ddadcf131bfee4df5c0d1314230563d81461d10202aae0a492c3
PageCount 4
ParticipantIDs ieee_primary_10711021
PublicationCentury 2000
PublicationDate 2024-Sept.-10
PublicationDateYYYYMMDD 2024-09-10
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-10
  day: 10
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation)
PublicationTitleAbbrev ETFA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096939
Score 2.2702157
Snippet Object manipulation in unstructured environments is important for many industrial applications where the items vary in shape, size, and material. This paper...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational efficiency
Detectors
grasp point selection
Grasping
Manufacturing automation
multi-object scenes
Noise
Object detection
Object picking
Pipelines
Position measurement
segmentation
Shape
Training
Title Segmentation-Based Approach for a Heuristic Grasping Procedure in Multi-Object Scenes
URI https://ieeexplore.ieee.org/document/10711021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1sT55UrPjNHrxuzCabZHOs0loEq9AWeiv7MZEiptImF3-9s5vUoiB4CbuBDZsZkvcymTdDyA03Uss4BZaEEDKRqZRJKQAPeZoXUiOkO3Hy0zgdzcTjPJm3YnWvhQEAn3wGgRv6f_l2ZWoXKsMnPOOuFXWHdDKZNmKtXUAFyXge520OF85uB9NhHwE6SfAzMBLBdvWPPioeRoYHZLzdQJM98hbUlQ7M56_ajP_e4SHp7RR79OUbi47IHpTHZDaB1_dWW1SyO8QrS_ttDXGKZJUqOoK6KdVMH9Zq47RTzWVsvQa6LKnX57Jn7aI1dGLci7FHZsPB9H7E2jYKbMmztGLG-ykOVYGOsVZZU_CY6wJA2CIxocUZkipkQrF1AUFu8Q7CSCkIlcgjE5-Qbrkq4ZRQNCNksVYiUlJw5bxqCy2Qs2U2tzI6Iz1nk8VHUyljsTXH-R_nL8i-c43Lv-DhJelW6xquEOQrfe2d-wU1FaYr
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvSkYsW3e_C6MZtsXscqrVHbKrSF3so-JlLEVGpy8dc7m6QWBcFL2A1s2MyQfF8m880QcsV1rGI_BBa44DIRyZDFsQA8JGGSxQoh3YqTB8MwnYiHaTBtxOqVFgYAquQzcOyw-pdvFrq0oTJ8wiNuW1Fvkq1ACBHUcq11SAXpeOInTRYXzq67414HIToI8EPQE85q_Y9OKhWQ9HbJcLWFOn_k1SkL5ejPX9UZ_73HPdJea_bo8zca7ZMNyA_IZAQvb426KGc3iFiGdpoq4hTpKpU0hbIu1kzvlvLDqqfqy5hyCXSe00qhy56UjdfQkbavxjaZ9Lrj25Q1jRTYnEdhwXTlKd-VGbrGGGl0xn2uMgBhskC7BmdIq5AL-caGBLnBO3A9KcGVIvG0f0ha-SKHI0LRjBD5SgpPxoJL61eTKYGsLTKJib1j0rY2mb3XtTJmK3Oc_HH-kmyn40F_1r8fPp6SHesmm43B3TPSKpYlnCPkF-qicvQXGNipeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation%29&rft.atitle=Segmentation-Based+Approach+for+a+Heuristic+Grasping+Procedure+in+Multi-Object+Scenes&rft.au=Ceschini%2C+Davide&rft.au=Cesare%2C+Riccardo+De&rft.au=Civitelli%2C+Enrico&rft.au=Indri%2C+Marina&rft.date=2024-09-10&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FETFA61755.2024.10711021&rft.externalDocID=10711021