Segmentation-Based Approach for a Heuristic Grasping Procedure in Multi-Object Scenes
Object manipulation in unstructured environments is important for many industrial applications where the items vary in shape, size, and material. This paper introduces a two-step pipeline for object picking, which combines instance segmentation with a heuristic based grasp point selection. The grasp...
Saved in:
| Published in | Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) pp. 1 - 4 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
10.09.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1946-0759 |
| DOI | 10.1109/ETFA61755.2024.10711021 |
Cover
| Abstract | Object manipulation in unstructured environments is important for many industrial applications where the items vary in shape, size, and material. This paper introduces a two-step pipeline for object picking, which combines instance segmentation with a heuristic based grasp point selection. The grasping points are determined using the 2D segmentation masks and depth images. A voxel-downsampling procedure reduces the depth noise, and the Theil-Sen algorithm ensures a robust linear regression for the grasping attitude determination. Unlike other methods, our approach does not require extensive training, as well as a fine labelled dataset for picking, and hence it is also independent of object shapes. Using SAM's ViT-h version and a binary object detector trained on a large dataset, our method is robust and class agnostic. The experiments, made using a RealSense D435i camera and a Racer 3 manipulator, show that our pipeline has a good success rate in simple and moderately complex scenarios, balancing computational efficiency and accu-racy. |
|---|---|
| AbstractList | Object manipulation in unstructured environments is important for many industrial applications where the items vary in shape, size, and material. This paper introduces a two-step pipeline for object picking, which combines instance segmentation with a heuristic based grasp point selection. The grasping points are determined using the 2D segmentation masks and depth images. A voxel-downsampling procedure reduces the depth noise, and the Theil-Sen algorithm ensures a robust linear regression for the grasping attitude determination. Unlike other methods, our approach does not require extensive training, as well as a fine labelled dataset for picking, and hence it is also independent of object shapes. Using SAM's ViT-h version and a binary object detector trained on a large dataset, our method is robust and class agnostic. The experiments, made using a RealSense D435i camera and a Racer 3 manipulator, show that our pipeline has a good success rate in simple and moderately complex scenarios, balancing computational efficiency and accu-racy. |
| Author | Civitelli, Enrico Cesare, Riccardo De Indri, Marina Ceschini, Davide |
| Author_xml | – sequence: 1 givenname: Davide surname: Ceschini fullname: Ceschini, Davide email: ceschinidavide@gmail.com organization: DET - Politecnico di Torino,Torino,Italy – sequence: 2 givenname: Riccardo De surname: Cesare fullname: Cesare, Riccardo De email: riccardo.decesare@comau.com organization: Comau S.p.A.,Grugliasco,TO,Italy – sequence: 3 givenname: Enrico surname: Civitelli fullname: Civitelli, Enrico email: enrico.civitelli@comau.com organization: Cognitive Robotics - Comau S.p.A.,Grugliasco,TO,Italy – sequence: 4 givenname: Marina surname: Indri fullname: Indri, Marina email: marina.indri@polito.it organization: DET - Politecnico di Torino,Torino,Italy |
| BookMark | eNo1kF9LwzAUxaMoOGe_gWC-QOe9TZsuj3PsjzCZsO15pMntzNjSkrQPfnsL6tPhHDgHfueR3fnGE2MvCBNEUK-L_XImsSyKSQZZPkEohzjDG5aoUk1FAUJiJuCWjVDlMoWyUA8sifEMAENfKqFG7LCj05V8pzvX-PRNR7J81rah0eaL103gmq-pDy52zvBV0LF1_sQ_Q2PI9oG48_yjv3Qu3VZnMh3fGfIUn9h9rS-Rkj8ds8NysZ-v08129T6fbVKHpexSQxUZI0DXaKbWamtqFFjVRLmtCwN2cPmAUEhhp5hLtAMgZFoT6FxlRozZ8--uI6JjG9xVh-_j_xPiB94vVV4 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ETFA61755.2024.10711021 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350361230 |
| EISSN | 1946-0759 |
| EndPage | 4 |
| ExternalDocumentID | 10711021 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i176t-cebecc30af1c8ddadcf131bfee4df5c0d1314230563d81461d10202aae0a492c3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:16:03 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-cebecc30af1c8ddadcf131bfee4df5c0d1314230563d81461d10202aae0a492c3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_10711021 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Sept.-10 |
| PublicationDateYYYYMMDD | 2024-09-10 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sept.-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) |
| PublicationTitleAbbrev | ETFA |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001096939 |
| Score | 2.2702157 |
| Snippet | Object manipulation in unstructured environments is important for many industrial applications where the items vary in shape, size, and material. This paper... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Computational efficiency Detectors grasp point selection Grasping Manufacturing automation multi-object scenes Noise Object detection Object picking Pipelines Position measurement segmentation Shape Training |
| Title | Segmentation-Based Approach for a Heuristic Grasping Procedure in Multi-Object Scenes |
| URI | https://ieeexplore.ieee.org/document/10711021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1sT55UrPjNHrxuzCabZHOs0loEq9AWeiv7MZEiptImF3-9s5vUoiB4CbuBDZsZkvcymTdDyA03Uss4BZaEEDKRqZRJKQAPeZoXUiOkO3Hy0zgdzcTjPJm3YnWvhQEAn3wGgRv6f_l2ZWoXKsMnPOOuFXWHdDKZNmKtXUAFyXge520OF85uB9NhHwE6SfAzMBLBdvWPPioeRoYHZLzdQJM98hbUlQ7M56_ajP_e4SHp7RR79OUbi47IHpTHZDaB1_dWW1SyO8QrS_ttDXGKZJUqOoK6KdVMH9Zq47RTzWVsvQa6LKnX57Jn7aI1dGLci7FHZsPB9H7E2jYKbMmztGLG-ykOVYGOsVZZU_CY6wJA2CIxocUZkipkQrF1AUFu8Q7CSCkIlcgjE5-Qbrkq4ZRQNCNksVYiUlJw5bxqCy2Qs2U2tzI6Iz1nk8VHUyljsTXH-R_nL8i-c43Lv-DhJelW6xquEOQrfe2d-wU1FaYr |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvSkYsW3e_C6MZtsXscqrVHbKrSF3so-JlLEVGpy8dc7m6QWBcFL2A1s2MyQfF8m880QcsV1rGI_BBa44DIRyZDFsQA8JGGSxQoh3YqTB8MwnYiHaTBtxOqVFgYAquQzcOyw-pdvFrq0oTJ8wiNuW1Fvkq1ACBHUcq11SAXpeOInTRYXzq67414HIToI8EPQE85q_Y9OKhWQ9HbJcLWFOn_k1SkL5ejPX9UZ_73HPdJea_bo8zca7ZMNyA_IZAQvb426KGc3iFiGdpoq4hTpKpU0hbIu1kzvlvLDqqfqy5hyCXSe00qhy56UjdfQkbavxjaZ9Lrj25Q1jRTYnEdhwXTlKd-VGbrGGGl0xn2uMgBhskC7BmdIq5AL-caGBLnBO3A9KcGVIvG0f0ha-SKHI0LRjBD5SgpPxoJL61eTKYGsLTKJib1j0rY2mb3XtTJmK3Oc_HH-kmyn40F_1r8fPp6SHesmm43B3TPSKpYlnCPkF-qicvQXGNipeA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation%29&rft.atitle=Segmentation-Based+Approach+for+a+Heuristic+Grasping+Procedure+in+Multi-Object+Scenes&rft.au=Ceschini%2C+Davide&rft.au=Cesare%2C+Riccardo+De&rft.au=Civitelli%2C+Enrico&rft.au=Indri%2C+Marina&rft.date=2024-09-10&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FETFA61755.2024.10711021&rft.externalDocID=10711021 |