Automated prediction of loudness growth curve using EEG signals

This paper introduces an innovative and automated approach for the prediction of loudness growth curves based on auditory brainstem responses (ABRs), harnessing the power of deep learning and signal processing techniques. Hearing loss, affecting a significant portion of the global population, calls...

Full description

Saved in:
Bibliographic Details
Published inProceedings ... Asia-Pacific Signal and Information Processing Association Annual Summit and Conference APSIPA ASC ... (Online) pp. 1 - 6
Main Authors Tiwari, Nitya, Vadyala, Arjun Reddy, Nataraj, K. S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.12.2024
Subjects
Online AccessGet full text
ISSN2640-0103
DOI10.1109/APSIPAASC63619.2025.10849087

Cover

Abstract This paper introduces an innovative and automated approach for the prediction of loudness growth curves based on auditory brainstem responses (ABRs), harnessing the power of deep learning and signal processing techniques. Hearing loss, affecting a significant portion of the global population, calls for accurate and efficient assessment methods to improve the quality of life for affected individuals. Our method entails preprocessing ABR signals, extracting informative features via empirical wavelet transform with Fourier Bessel series expansion, and subsequently mapping these features to loudness growth estimates using multi-target regression. Through evaluation employing mean squared error and Frechet distance, our approach demonstrates acceptable performance and consistency across subjects and stimulus levels. Importantly, it overcomes limitations inherent in existing methods that primarily rely on click ABRs and psychoacoustic measures.
AbstractList This paper introduces an innovative and automated approach for the prediction of loudness growth curves based on auditory brainstem responses (ABRs), harnessing the power of deep learning and signal processing techniques. Hearing loss, affecting a significant portion of the global population, calls for accurate and efficient assessment methods to improve the quality of life for affected individuals. Our method entails preprocessing ABR signals, extracting informative features via empirical wavelet transform with Fourier Bessel series expansion, and subsequently mapping these features to loudness growth estimates using multi-target regression. Through evaluation employing mean squared error and Frechet distance, our approach demonstrates acceptable performance and consistency across subjects and stimulus levels. Importantly, it overcomes limitations inherent in existing methods that primarily rely on click ABRs and psychoacoustic measures.
Author Vadyala, Arjun Reddy
Tiwari, Nitya
Nataraj, K. S.
Author_xml – sequence: 1
  givenname: Nitya
  surname: Tiwari
  fullname: Tiwari, Nitya
  email: nityatiwari@iitbbs.ac.in
  organization: Indian Institute of Technology Bhubaneswar,School of Electrical Sciences,Bhubaneswar,India
– sequence: 2
  givenname: Arjun Reddy
  surname: Vadyala
  fullname: Vadyala, Arjun Reddy
  email: 21ee01011@iitbbs.ac.in
  organization: Indian Institute of Technology Bhubaneswar,School of Electrical Sciences,Bhubaneswar,India
– sequence: 3
  givenname: K. S.
  surname: Nataraj
  fullname: Nataraj, K. S.
  email: nataraj@iiitdwd.ac.in
  organization: Indian Institute of Information Technology Dharwad,Department of Electronics and Communication Engineering,Dharwad,India
BookMark eNo1j0FLwzAYQKMoOOf-gYccvHZ-X9KkyUnK2OZg4GB6Hmn6ZUa2djSt4r93oJ7e5fHg3bKrpm2IsQeEKSLYx3KzXW3KcjvTUqOdChBqimByC6a4YBNbWCMVSF1IiZdsJHQOGSDIGzZJ6QMApAB5tkfsqRz69uh6qvmpozr6PrYNbwM_tEPdUEp837Vf_Tv3Q_dJfEix2fP5fMlT3DfukO7YdTiDJn8cs7fF_HX2nK1flqtZuc4iFrrPvK-Fz4O3RotcueAMaRnAIhqLVU0eQ5UbCrVWWChVORRVVXhlXQhCUy7H7P63G4lod-ri0XXfu_9n-QOeJ09c
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/APSIPAASC63619.2025.10849087
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350367331
EISSN 2640-0103
EndPage 6
ExternalDocumentID 10849087
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-ccd2c4fc986245afa8e63f0911891bdec1fb48efd651755ba12bb7c59aff26e43
IEDL.DBID RIE
IngestDate Wed Feb 12 06:22:50 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-ccd2c4fc986245afa8e63f0911891bdec1fb48efd651755ba12bb7c59aff26e43
PageCount 6
ParticipantIDs ieee_primary_10849087
PublicationCentury 2000
PublicationDate 2024-Dec.-3
PublicationDateYYYYMMDD 2024-12-03
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-3
  day: 03
PublicationDecade 2020
PublicationTitle Proceedings ... Asia-Pacific Signal and Information Processing Association Annual Summit and Conference APSIPA ASC ... (Online)
PublicationTitleAbbrev APSIPA ASC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203490
Score 1.9019147
Snippet This paper introduces an innovative and automated approach for the prediction of loudness growth curves based on auditory brainstem responses (ABRs),...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Brain modeling
Brainstem
Deep learning
Estimation
Feature extraction
Measurement
Psychoacoustic models
Robustness
Signal processing
Wavelet transforms
Title Automated prediction of loudness growth curve using EEG signals
URI https://ieeexplore.ieee.org/document/10849087
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA7ag-jFreJODr3O2JmsPclQWqtgKdRCbyVrFaVTyowHf70v08UFBJlLmMMk5CXzvZf3vi8INRwBHJDeRFylLqLMqkhzqaKUCCEAIEjCA3f4sc97I_owZuMVWb3iwjjnquIzF4dmlcu3uSnDURnscBnyVGIbbQvJl2StzYEKSYPUSnMHNVY6mjfZYHg_yLJhmxMIEyAWTFm8_sSPy1QqLOnuo_56FMsSkte4LHRsPn4JNP57mAeo_kXbw4MNIB2iLTc7QnvfFAeP0W1WFjk4qc7i-SLkaIJdcO7xW17a8NfDU4jLi2dsysW7w6Eqfoo7nTsc6jxgpdbRqNt5avei1R0K0UsieBEZY1NDvWkFIghTXknHiQcnIZGtRFtnEq-pdN5yBo4E0ypJtRaGtZT3KXeUnKDaLJ-5U4SldlID3MOmtZQyojg8ngqwLbHQwRmqh7mYzJcyGZP1NJz_8f4C7YJJKtXEJrlEtWJRuitA-EJfV5b9BPzOpTc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEF5aC31c-rL03T14TWqyj6ynEkSrrYqggjfJvmxpMSJJD_31nY3aFxRKLiGHZJnZzTezM9-3CFUMARwQVnk8CY1HmU48yUXihSSKIgAIEnDHHe72eGtEH8ZsvCKrF1wYY0zRfGZ8d1vU8nWqcrdVBitcuDpVtIm2GKWULelan1sqJHRiK9VtVFkpad7G_UG7H8eDOieQKEA2GDJ__ZIfx6kUaNLcR731OJZNJC9-nklfvf-SaPz3QA9Q-Yu4h_ufkHSINszsCO190xw8RndxnqUQphqN5wtXpXGewanFr2mu3X8PTyEzz56wyhdvBru--CluNO6x6_SAuVpGo2ZjWG95q1MUvOcg4pmnlA4VtarmqCAssYkwnFgIEwJRC6Q2KrCSCmM1ZxBKMJkEoZSRYrXE2pAbSk5QaZbOzCnCQhohAfBh2WowP0k4XJZG4F2i4QNnqOxsMZkvhTImazOc__H8Bu20ht3OpNPuPV6gXXBPoaFYJZeolC1ycwV4n8nrwssf1JaohA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+...+Asia-Pacific+Signal+and+Information+Processing+Association+Annual+Summit+and+Conference+APSIPA+ASC+...+%28Online%29&rft.atitle=Automated+prediction+of+loudness+growth+curve+using+EEG+signals&rft.au=Tiwari%2C+Nitya&rft.au=Vadyala%2C+Arjun+Reddy&rft.au=Nataraj%2C+K.+S.&rft.date=2024-12-03&rft.pub=IEEE&rft.eissn=2640-0103&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FAPSIPAASC63619.2025.10849087&rft.externalDocID=10849087