YOLO-Based Techniques for the Crown-of-Thorns Starfish Detection: A Comparative Study

Crown-of-thorns Starfish (COTS) outbreaks are the major direct contributors to decline in coral cover. This research investigates the application of transfer learning and YOLO variants (YOLOv5 and YOLOR) for real-time detection of Crown-of-Thorns starfish (COTS) in underwater images. Due to the scar...

Full description

Saved in:
Bibliographic Details
Published in2024 International Conference on Next Generation Computing Applications (NextComp) pp. 1 - 5
Main Authors Ramdharee, Rakshita, Mungloo-Dilmohamud, Zahra
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.10.2024
Subjects
Online AccessGet full text
DOI10.1109/NextComp63004.2024.10779710

Cover

Abstract Crown-of-thorns Starfish (COTS) outbreaks are the major direct contributors to decline in coral cover. This research investigates the application of transfer learning and YOLO variants (YOLOv5 and YOLOR) for real-time detection of Crown-of-Thorns starfish (COTS) in underwater images. Due to the scarcity of COTS-specific datasets, the potential of leveraging pre-trained models and data augmentation techniques were explored. Our findings show that models trained on close-up COTS images achieved higher accuracy compared to those trained on wider reef scenes. While YOLOv5 performed better in terms of speed and accuracy, both models struggled to detect small objects and distinguish COTS from similar marine life. To address these limitations, future research should focus on data augmentation, curriculum learning, and multi-stage detection pipelines to enhance model generalization and robustness for real-world deployment.
AbstractList Crown-of-thorns Starfish (COTS) outbreaks are the major direct contributors to decline in coral cover. This research investigates the application of transfer learning and YOLO variants (YOLOv5 and YOLOR) for real-time detection of Crown-of-Thorns starfish (COTS) in underwater images. Due to the scarcity of COTS-specific datasets, the potential of leveraging pre-trained models and data augmentation techniques were explored. Our findings show that models trained on close-up COTS images achieved higher accuracy compared to those trained on wider reef scenes. While YOLOv5 performed better in terms of speed and accuracy, both models struggled to detect small objects and distinguish COTS from similar marine life. To address these limitations, future research should focus on data augmentation, curriculum learning, and multi-stage detection pipelines to enhance model generalization and robustness for real-world deployment.
Author Ramdharee, Rakshita
Mungloo-Dilmohamud, Zahra
Author_xml – sequence: 1
  givenname: Rakshita
  surname: Ramdharee
  fullname: Ramdharee, Rakshita
  email: rramdharee13@gmail.com
  organization: FoICDT University of Mauritius,Department of Digital Technologies,Mauritius
– sequence: 2
  givenname: Zahra
  surname: Mungloo-Dilmohamud
  fullname: Mungloo-Dilmohamud, Zahra
  email: z.mungloo@uom.ac.mu
  organization: FoICDT University of Mauritius,Department of Digital Technologies,Mauritius
BookMark eNo1j7FOwzAURY0EA5T-AYMl5pT34rh22EqggFSRgXRgqpz4WbFE4-K4QP8eEDDd5egc3TN2PISBGLtEmCFCefVEn6kK291cABSzHPJihqBUqRCO2LRUpRYCJaoCxClbv9SrOrsxI1neUNcP_m1PI3ch8tQTr2L4GLLgsqYPcRj5czLR-bHnt5SoSz4M13zBf2ommuTf6ZvY28M5O3HmdaTp307YennXVA_Zqr5_rBarzKOap6wTNHdWWTC5dlpqMFhi2zl05IxuZWs02txSCx2KArUVUhO0EqQDVRopJuzi1-uJaLOLfmviYfP_VnwBXXhRfw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NextComp63004.2024.10779710
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331517403
EndPage 5
ExternalDocumentID 10779710
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-c3e6fd7d0a28f8580a191bcf1fefa8b5ba81d2deb0c13418d358e0b505f079a53
IEDL.DBID RIE
IngestDate Wed Aug 27 02:33:35 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-c3e6fd7d0a28f8580a191bcf1fefa8b5ba81d2deb0c13418d358e0b505f079a53
PageCount 5
ParticipantIDs ieee_primary_10779710
PublicationCentury 2000
PublicationDate 2024-Oct.-24
PublicationDateYYYYMMDD 2024-10-24
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-24
  day: 24
PublicationDecade 2020
PublicationTitle 2024 International Conference on Next Generation Computing Applications (NextComp)
PublicationTitleAbbrev NextComp
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8904276
Snippet Crown-of-thorns Starfish (COTS) outbreaks are the major direct contributors to decline in coral cover. This research investigates the application of transfer...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Computational modeling
Crown-of-Thorns
Data augmentation
Data models
Deep Learning
Marine vegetation
Pipelines
Real-time systems
Robustness
Transfer learning
YOLO
YOLOR
YOLOv5
Title YOLO-Based Techniques for the Crown-of-Thorns Starfish Detection: A Comparative Study
URI https://ieeexplore.ieee.org/document/10779710
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66g3hSceJvAnpNzdq0Sb3pdAzRzcMG8zTy44UNoR1bd9C_3iRbHQqCtxIoCQkv7_va930Poeu0ldmEGUsc8QLCFM9cSMWWpMLKJBCC2AucX3pZd8ieRuloLVYPWhgACMVnEPnH8C_flHrpP5W5COc8515Qtc1FthJr7aCrtW_mTc9dZz6KgouUo34xi-o3fvROCamjs4d69aSripH3aFmpSH_-8mP896r2UXOj0sOv3_nnAG1BcYiGb_3nPrl3ucngQe3PusAOmmIH9XDbs25SWjKYlPNigR3WnNvpYoIfoApFWcUtvsPtjSU49oWGH0007DwO2l2ybp1Api2eVUQnkFnDDZWxsCIVVDpeprRtWbBSqFRJh1NjA4pq7-gmTJIKoMrBIUt5LtPkCDWKsoBjhI0UDGSc5ODblelcUasl0NxKriVl_AQ1_Z6MZyt3jHG9Had_jJ-hXX80_v6P2TlqVPMlXLjEXqnLcKBf7_GlGw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA2ioJ5UnPjbgF5TszZpUm86HVO3zkMH8zTykw2hla076F9v0q0OBcFbKZSWhK_vvfZ77wPgijZjGxFtkRNeBhHJYldSoUWUWxFVgiD0BudeGncG5GlIh0uzeuWFMcZUzWcm8IfVv3xdqLn_VOYqnLGEeUPVBiWE0IVdaxNcLpMzr1P3QvN1VOVIOfEXkqC-5sf0lAo82jsgrW-76Bl5C-alDNTnr0TGfz_XLmisfHrw5RuB9sCayffB4LXf7aM7h04aZnVC6ww6cgod2YMtr7tRYVE2Lqb5DDq2ObWT2Rjem7Jqy8pv4C1srULBoW81_GiAQfsha3XQcngCmjRZXCIVmdhqprEIueWUY-GUmVS2aY0VXFIpHFMNtZFY-Uw3riPKDZaOEFnMEkGjA7CeF7k5BFALTowIo8T4gWUqkdgqYXBiBVMCE3YEGn5NRu-LfIxRvRzHf5y_AFudrNcddR_T5xOw7bfJo0FITsF6OZ2bMwfzpTyvNvcLwo6oaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Next+Generation+Computing+Applications+%28NextComp%29&rft.atitle=YOLO-Based+Techniques+for+the+Crown-of-Thorns+Starfish+Detection%3A+A+Comparative+Study&rft.au=Ramdharee%2C+Rakshita&rft.au=Mungloo-Dilmohamud%2C+Zahra&rft.date=2024-10-24&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FNextComp63004.2024.10779710&rft.externalDocID=10779710