YOLO-Based Techniques for the Crown-of-Thorns Starfish Detection: A Comparative Study
Crown-of-thorns Starfish (COTS) outbreaks are the major direct contributors to decline in coral cover. This research investigates the application of transfer learning and YOLO variants (YOLOv5 and YOLOR) for real-time detection of Crown-of-Thorns starfish (COTS) in underwater images. Due to the scar...
Saved in:
| Published in | 2024 International Conference on Next Generation Computing Applications (NextComp) pp. 1 - 5 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
24.10.2024
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/NextComp63004.2024.10779710 |
Cover
| Abstract | Crown-of-thorns Starfish (COTS) outbreaks are the major direct contributors to decline in coral cover. This research investigates the application of transfer learning and YOLO variants (YOLOv5 and YOLOR) for real-time detection of Crown-of-Thorns starfish (COTS) in underwater images. Due to the scarcity of COTS-specific datasets, the potential of leveraging pre-trained models and data augmentation techniques were explored. Our findings show that models trained on close-up COTS images achieved higher accuracy compared to those trained on wider reef scenes. While YOLOv5 performed better in terms of speed and accuracy, both models struggled to detect small objects and distinguish COTS from similar marine life. To address these limitations, future research should focus on data augmentation, curriculum learning, and multi-stage detection pipelines to enhance model generalization and robustness for real-world deployment. |
|---|---|
| AbstractList | Crown-of-thorns Starfish (COTS) outbreaks are the major direct contributors to decline in coral cover. This research investigates the application of transfer learning and YOLO variants (YOLOv5 and YOLOR) for real-time detection of Crown-of-Thorns starfish (COTS) in underwater images. Due to the scarcity of COTS-specific datasets, the potential of leveraging pre-trained models and data augmentation techniques were explored. Our findings show that models trained on close-up COTS images achieved higher accuracy compared to those trained on wider reef scenes. While YOLOv5 performed better in terms of speed and accuracy, both models struggled to detect small objects and distinguish COTS from similar marine life. To address these limitations, future research should focus on data augmentation, curriculum learning, and multi-stage detection pipelines to enhance model generalization and robustness for real-world deployment. |
| Author | Ramdharee, Rakshita Mungloo-Dilmohamud, Zahra |
| Author_xml | – sequence: 1 givenname: Rakshita surname: Ramdharee fullname: Ramdharee, Rakshita email: rramdharee13@gmail.com organization: FoICDT University of Mauritius,Department of Digital Technologies,Mauritius – sequence: 2 givenname: Zahra surname: Mungloo-Dilmohamud fullname: Mungloo-Dilmohamud, Zahra email: z.mungloo@uom.ac.mu organization: FoICDT University of Mauritius,Department of Digital Technologies,Mauritius |
| BookMark | eNo1j7FOwzAURY0EA5T-AYMl5pT34rh22EqggFSRgXRgqpz4WbFE4-K4QP8eEDDd5egc3TN2PISBGLtEmCFCefVEn6kK291cABSzHPJihqBUqRCO2LRUpRYCJaoCxClbv9SrOrsxI1neUNcP_m1PI3ch8tQTr2L4GLLgsqYPcRj5czLR-bHnt5SoSz4M13zBf2ommuTf6ZvY28M5O3HmdaTp307YennXVA_Zqr5_rBarzKOap6wTNHdWWTC5dlpqMFhi2zl05IxuZWs02txSCx2KArUVUhO0EqQDVRopJuzi1-uJaLOLfmviYfP_VnwBXXhRfw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/NextComp63004.2024.10779710 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331517403 |
| EndPage | 5 |
| ExternalDocumentID | 10779710 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i176t-c3e6fd7d0a28f8580a191bcf1fefa8b5ba81d2deb0c13418d358e0b505f079a53 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:33:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-c3e6fd7d0a28f8580a191bcf1fefa8b5ba81d2deb0c13418d358e0b505f079a53 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10779710 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-24 |
| PublicationDateYYYYMMDD | 2024-10-24 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 International Conference on Next Generation Computing Applications (NextComp) |
| PublicationTitleAbbrev | NextComp |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8904276 |
| Snippet | Crown-of-thorns Starfish (COTS) outbreaks are the major direct contributors to decline in coral cover. This research investigates the application of transfer... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Computational modeling Crown-of-Thorns Data augmentation Data models Deep Learning Marine vegetation Pipelines Real-time systems Robustness Transfer learning YOLO YOLOR YOLOv5 |
| Title | YOLO-Based Techniques for the Crown-of-Thorns Starfish Detection: A Comparative Study |
| URI | https://ieeexplore.ieee.org/document/10779710 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66g3hSceJvAnpNzdq0Sb3pdAzRzcMG8zTy44UNoR1bd9C_3iRbHQqCtxIoCQkv7_va930Poeu0ldmEGUsc8QLCFM9cSMWWpMLKJBCC2AucX3pZd8ieRuloLVYPWhgACMVnEPnH8C_flHrpP5W5COc8515Qtc1FthJr7aCrtW_mTc9dZz6KgouUo34xi-o3fvROCamjs4d69aSripH3aFmpSH_-8mP896r2UXOj0sOv3_nnAG1BcYiGb_3nPrl3ucngQe3PusAOmmIH9XDbs25SWjKYlPNigR3WnNvpYoIfoApFWcUtvsPtjSU49oWGH0007DwO2l2ybp1Api2eVUQnkFnDDZWxsCIVVDpeprRtWbBSqFRJh1NjA4pq7-gmTJIKoMrBIUt5LtPkCDWKsoBjhI0UDGSc5ODblelcUasl0NxKriVl_AQ1_Z6MZyt3jHG9Had_jJ-hXX80_v6P2TlqVPMlXLjEXqnLcKBf7_GlGw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA2ioJ5UnPjbgF5TszZpUm86HVO3zkMH8zTykw2hla076F9v0q0OBcFbKZSWhK_vvfZ77wPgijZjGxFtkRNeBhHJYldSoUWUWxFVgiD0BudeGncG5GlIh0uzeuWFMcZUzWcm8IfVv3xdqLn_VOYqnLGEeUPVBiWE0IVdaxNcLpMzr1P3QvN1VOVIOfEXkqC-5sf0lAo82jsgrW-76Bl5C-alDNTnr0TGfz_XLmisfHrw5RuB9sCayffB4LXf7aM7h04aZnVC6ww6cgod2YMtr7tRYVE2Lqb5DDq2ObWT2Rjem7Jqy8pv4C1srULBoW81_GiAQfsha3XQcngCmjRZXCIVmdhqprEIueWUY-GUmVS2aY0VXFIpHFMNtZFY-Uw3riPKDZaOEFnMEkGjA7CeF7k5BFALTowIo8T4gWUqkdgqYXBiBVMCE3YEGn5NRu-LfIxRvRzHf5y_AFudrNcddR_T5xOw7bfJo0FITsF6OZ2bMwfzpTyvNvcLwo6oaA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Next+Generation+Computing+Applications+%28NextComp%29&rft.atitle=YOLO-Based+Techniques+for+the+Crown-of-Thorns+Starfish+Detection%3A+A+Comparative+Study&rft.au=Ramdharee%2C+Rakshita&rft.au=Mungloo-Dilmohamud%2C+Zahra&rft.date=2024-10-24&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FNextComp63004.2024.10779710&rft.externalDocID=10779710 |