A Model for Dynamic Knowledge Representation and Learning
Knowledge of complex systems is often imprecise and subject to frequent modifications. Consequently, creating a knowledge representation and inference model that can adapt to changes in information is crucial. In this paper, we integrate the functional link into the fuzzy Petri net and propose a gen...
        Saved in:
      
    
          | Published in | 2024 European Control Conference (ECC) pp. 1051 - 1056 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            EUCA
    
        25.06.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.23919/ECC64448.2024.10590787 | 
Cover
| Abstract | Knowledge of complex systems is often imprecise and subject to frequent modifications. Consequently, creating a knowledge representation and inference model that can adapt to changes in information is crucial. In this paper, we integrate the functional link into the fuzzy Petri net and propose a generalized model called functional link fuzzy Petri net (FLFPN). This model retains the explanatory ability of fuzzy Petri nets while acquiring the powerful learning ability of functional link neural networks. Finally, since the forming of congestion is highly sensitive to traffic situations in peak hours, we use FLFPN to predict traffic situations of an expressway ramp, which shows a significant improvement in the prediction accuracy, as compared with the traditional FPN model. | 
    
|---|---|
| AbstractList | Knowledge of complex systems is often imprecise and subject to frequent modifications. Consequently, creating a knowledge representation and inference model that can adapt to changes in information is crucial. In this paper, we integrate the functional link into the fuzzy Petri net and propose a generalized model called functional link fuzzy Petri net (FLFPN). This model retains the explanatory ability of fuzzy Petri nets while acquiring the powerful learning ability of functional link neural networks. Finally, since the forming of congestion is highly sensitive to traffic situations in peak hours, we use FLFPN to predict traffic situations of an expressway ramp, which shows a significant improvement in the prediction accuracy, as compared with the traditional FPN model. | 
    
| Author | Zhang, Wenbiao Wang, Weilin Wang, Xinyuan  | 
    
| Author_xml | – sequence: 1 givenname: Xinyuan surname: Wang fullname: Wang, Xinyuan email: merewxy15@gmail.com organization: University of Shanghai for Science and Technology,Department of Control Science and Engineering,Shanghai,200093 – sequence: 2 givenname: Wenbiao surname: Zhang fullname: Zhang, Wenbiao email: zhang_wb@hdec.com organization: Huadong Engineering Corporation Limited,Hangzhou,311122 – sequence: 3 givenname: Weilin surname: Wang fullname: Wang, Weilin email: wlwang@usst.edu.cn organization: University of Shanghai for Science and Technology,Department of Control Science and Engineering,Shanghai,200093  | 
    
| BookMark | eNo1j8tKAzEUQCPoQmv_QDA_MGNuHpNkWcb6wCkF0XW5M7kpgWlSpgPSv1dQV-esDpwbdplLJsbuQdRSefAP67ZttNaulkLqGoTxwjp7wZbeOvXjoDUIe838im9KoJHHMvHHc8ZDGvhbLl8jhT3xdzpOdKI845xK5pgD7winnPL-ll1FHE-0_OOCfT6tP9qXqts-v7arrkpgm7nyDoFkYw25CKEHD0YOSLoHGmzvQMQAjfEqqr4JFtEGcEZKHZSJ2MOgFuzut5uIaHec0gGn8-7_SH0DuxRFMQ | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.23919/ECC64448.2024.10590787 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9783907144107 3907144104  | 
    
| EndPage | 1056 | 
    
| ExternalDocumentID | 10590787 | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: PowerChina grantid: KY2020-JT-12-01-2022,HDY-CGHT20-20231262Y funderid: 10.13039/501100014222  | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i176t-98a1e2675e8f1db19152cae4b1ec7b810fd16593f3b6d7aa7d185224d35fab1c3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Jul 31 06:02:01 EDT 2024 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i176t-98a1e2675e8f1db19152cae4b1ec7b810fd16593f3b6d7aa7d185224d35fab1c3 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_10590787 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-June-25 | 
    
| PublicationDateYYYYMMDD | 2024-06-25 | 
    
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-25 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2024 European Control Conference (ECC) | 
    
| PublicationTitleAbbrev | ECC | 
    
| PublicationYear | 2024 | 
    
| Publisher | EUCA | 
    
| Publisher_xml | – name: EUCA | 
    
| Score | 1.8773698 | 
    
| Snippet | Knowledge of complex systems is often imprecise and subject to frequent modifications. Consequently, creating a knowledge representation and inference model... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1051 | 
    
| SubjectTerms | Adaptation models Computational modeling Europe Neural networks Petri nets Road transportation Training  | 
    
| Title | A Model for Dynamic Knowledge Representation and Learning | 
    
| URI | https://ieeexplore.ieee.org/document/10590787 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA22K1cqVnyThduZNslkkiylthTFImKhu5LHjYgyFZlu_PommRlFQXAXQiCvxTk3OedehK5GUFCg1mXW0xCgiBCgaEtcFhqBXJvASVM6hvt5OVsUt0u-bM3qyQsDAEl8Bnlspr98t7ab-FQ2jFwgQJrooZ6QZWPWajRblCmihpPxOMB7UmzRIu9G_6ibkmBjuofm3YSNWuQ139Qmt5-_cjH-e0X7aPDt0MMPX9hzgHagOkTqGsfSZm84EFF805Sax3fdoxl-TKLX1mtUYV053GZXfR6gxXTyNJ5lbWmE7IWIss6U1ARoIPsgPXEmBF2cWg2FIWCFkWTkHSm5Yp6Z0gmthYsmaVo4xr02xLIj1K_WFRwjHO7IecGUo9oXkmstQcW_WDYCSSwvT9Ag7nv13mS_WHVbPv2j_wztxuOPcirKz1G__tjARQDu2lymC9sCOlGYSA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA1aF7pSseLbLNzOtHnNYym1pdoHIi10V_K4EbFMRaYbv94kM6MoCO5CCCThLs65yTn3InTTBU6BahNpS12CkroERWpiIjdw5Fo5ThrKMUymyXDOHxZiUZvVgxcGAIL4DGI_DH_5Zq03_qms47mAg7R0G-0Izrmo7FqVaouynOSdfq_nAD5otiiPm_U_OqcE4Bjso2mzZaUXeY03pYr1x69qjP8-0wFqf3v08OMX-hyiLSiOUH6LfXOzFXZUFN9VzebxqHk2w09B9lq7jQosC4Pr-qrPbTQf9Ge9YVQ3R4heSJqUUZ5JAtTRfcgsMcqlXYJqCVwR0KnKSNcakoicWaYSk0qZGm-TptwwYaUimh2jVrEu4ARhFyVjU5YbKi3PhJQZ5P43lnUhI1okp6jt7718q-pfLJsrn_0xf412h7PJeDm-n47O0Z4PhRdXUXGBWuX7Bi4djJfqKgTvE2Z_m5U | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+European+Control+Conference+%28ECC%29&rft.atitle=A+Model+for+Dynamic+Knowledge+Representation+and+Learning&rft.au=Wang%2C+Xinyuan&rft.au=Zhang%2C+Wenbiao&rft.au=Wang%2C+Weilin&rft.date=2024-06-25&rft.pub=EUCA&rft.spage=1051&rft.epage=1056&rft_id=info:doi/10.23919%2FECC64448.2024.10590787&rft.externalDocID=10590787 |