A Model for Dynamic Knowledge Representation and Learning

Knowledge of complex systems is often imprecise and subject to frequent modifications. Consequently, creating a knowledge representation and inference model that can adapt to changes in information is crucial. In this paper, we integrate the functional link into the fuzzy Petri net and propose a gen...

Full description

Saved in:
Bibliographic Details
Published in2024 European Control Conference (ECC) pp. 1051 - 1056
Main Authors Wang, Xinyuan, Zhang, Wenbiao, Wang, Weilin
Format Conference Proceeding
LanguageEnglish
Published EUCA 25.06.2024
Subjects
Online AccessGet full text
DOI10.23919/ECC64448.2024.10590787

Cover

Abstract Knowledge of complex systems is often imprecise and subject to frequent modifications. Consequently, creating a knowledge representation and inference model that can adapt to changes in information is crucial. In this paper, we integrate the functional link into the fuzzy Petri net and propose a generalized model called functional link fuzzy Petri net (FLFPN). This model retains the explanatory ability of fuzzy Petri nets while acquiring the powerful learning ability of functional link neural networks. Finally, since the forming of congestion is highly sensitive to traffic situations in peak hours, we use FLFPN to predict traffic situations of an expressway ramp, which shows a significant improvement in the prediction accuracy, as compared with the traditional FPN model.
AbstractList Knowledge of complex systems is often imprecise and subject to frequent modifications. Consequently, creating a knowledge representation and inference model that can adapt to changes in information is crucial. In this paper, we integrate the functional link into the fuzzy Petri net and propose a generalized model called functional link fuzzy Petri net (FLFPN). This model retains the explanatory ability of fuzzy Petri nets while acquiring the powerful learning ability of functional link neural networks. Finally, since the forming of congestion is highly sensitive to traffic situations in peak hours, we use FLFPN to predict traffic situations of an expressway ramp, which shows a significant improvement in the prediction accuracy, as compared with the traditional FPN model.
Author Zhang, Wenbiao
Wang, Weilin
Wang, Xinyuan
Author_xml – sequence: 1
  givenname: Xinyuan
  surname: Wang
  fullname: Wang, Xinyuan
  email: merewxy15@gmail.com
  organization: University of Shanghai for Science and Technology,Department of Control Science and Engineering,Shanghai,200093
– sequence: 2
  givenname: Wenbiao
  surname: Zhang
  fullname: Zhang, Wenbiao
  email: zhang_wb@hdec.com
  organization: Huadong Engineering Corporation Limited,Hangzhou,311122
– sequence: 3
  givenname: Weilin
  surname: Wang
  fullname: Wang, Weilin
  email: wlwang@usst.edu.cn
  organization: University of Shanghai for Science and Technology,Department of Control Science and Engineering,Shanghai,200093
BookMark eNo1j8tKAzEUQCPoQmv_QDA_MGNuHpNkWcb6wCkF0XW5M7kpgWlSpgPSv1dQV-esDpwbdplLJsbuQdRSefAP67ZttNaulkLqGoTxwjp7wZbeOvXjoDUIe838im9KoJHHMvHHc8ZDGvhbLl8jhT3xdzpOdKI845xK5pgD7winnPL-ll1FHE-0_OOCfT6tP9qXqts-v7arrkpgm7nyDoFkYw25CKEHD0YOSLoHGmzvQMQAjfEqqr4JFtEGcEZKHZSJ2MOgFuzut5uIaHec0gGn8-7_SH0DuxRFMQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/ECC64448.2024.10590787
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9783907144107
3907144104
EndPage 1056
ExternalDocumentID 10590787
Genre orig-research
GrantInformation_xml – fundername: PowerChina
  grantid: KY2020-JT-12-01-2022,HDY-CGHT20-20231262Y
  funderid: 10.13039/501100014222
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-98a1e2675e8f1db19152cae4b1ec7b810fd16593f3b6d7aa7d185224d35fab1c3
IEDL.DBID RIE
IngestDate Wed Jul 31 06:02:01 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-98a1e2675e8f1db19152cae4b1ec7b810fd16593f3b6d7aa7d185224d35fab1c3
PageCount 6
ParticipantIDs ieee_primary_10590787
PublicationCentury 2000
PublicationDate 2024-June-25
PublicationDateYYYYMMDD 2024-06-25
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-25
  day: 25
PublicationDecade 2020
PublicationTitle 2024 European Control Conference (ECC)
PublicationTitleAbbrev ECC
PublicationYear 2024
Publisher EUCA
Publisher_xml – name: EUCA
Score 1.8773698
Snippet Knowledge of complex systems is often imprecise and subject to frequent modifications. Consequently, creating a knowledge representation and inference model...
SourceID ieee
SourceType Publisher
StartPage 1051
SubjectTerms Adaptation models
Computational modeling
Europe
Neural networks
Petri nets
Road transportation
Training
Title A Model for Dynamic Knowledge Representation and Learning
URI https://ieeexplore.ieee.org/document/10590787
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA22K1cqVnyThduZNslkkiylthTFImKhu5LHjYgyFZlu_PommRlFQXAXQiCvxTk3OedehK5GUFCg1mXW0xCgiBCgaEtcFhqBXJvASVM6hvt5OVsUt0u-bM3qyQsDAEl8Bnlspr98t7ab-FQ2jFwgQJrooZ6QZWPWajRblCmihpPxOMB7UmzRIu9G_6ibkmBjuofm3YSNWuQ139Qmt5-_cjH-e0X7aPDt0MMPX9hzgHagOkTqGsfSZm84EFF805Sax3fdoxl-TKLX1mtUYV053GZXfR6gxXTyNJ5lbWmE7IWIss6U1ARoIPsgPXEmBF2cWg2FIWCFkWTkHSm5Yp6Z0gmthYsmaVo4xr02xLIj1K_WFRwjHO7IecGUo9oXkmstQcW_WDYCSSwvT9Ag7nv13mS_WHVbPv2j_wztxuOPcirKz1G__tjARQDu2lymC9sCOlGYSA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA1aF7pSseLbLNzOtHnNYym1pdoHIi10V_K4EbFMRaYbv94kM6MoCO5CCCThLs65yTn3InTTBU6BahNpS12CkroERWpiIjdw5Fo5ThrKMUymyXDOHxZiUZvVgxcGAIL4DGI_DH_5Zq03_qms47mAg7R0G-0Izrmo7FqVaouynOSdfq_nAD5otiiPm_U_OqcE4Bjso2mzZaUXeY03pYr1x69qjP8-0wFqf3v08OMX-hyiLSiOUH6LfXOzFXZUFN9VzebxqHk2w09B9lq7jQosC4Pr-qrPbTQf9Ge9YVQ3R4heSJqUUZ5JAtTRfcgsMcqlXYJqCVwR0KnKSNcakoicWaYSk0qZGm-TptwwYaUimh2jVrEu4ARhFyVjU5YbKi3PhJQZ5P43lnUhI1okp6jt7718q-pfLJsrn_0xf412h7PJeDm-n47O0Z4PhRdXUXGBWuX7Bi4djJfqKgTvE2Z_m5U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+European+Control+Conference+%28ECC%29&rft.atitle=A+Model+for+Dynamic+Knowledge+Representation+and+Learning&rft.au=Wang%2C+Xinyuan&rft.au=Zhang%2C+Wenbiao&rft.au=Wang%2C+Weilin&rft.date=2024-06-25&rft.pub=EUCA&rft.spage=1051&rft.epage=1056&rft_id=info:doi/10.23919%2FECC64448.2024.10590787&rft.externalDocID=10590787