Faster Isomorphism Testing of p-Groups of Frattini Class 2

The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical N^{O(\mathrm{I}\mathrm{o}\mathrm{g}N)} -time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p groups of class 2 and exponen...

Full description

Saved in:
Bibliographic Details
Published inProceedings / annual Symposium on Foundations of Computer Science pp. 1408 - 1424
Main Authors Ivanyos, Gabor, Mendoza, Euan J., Qiao, Youming, Sun, Xiaorui, Zhang, Chuanqi
Format Conference Proceeding
LanguageEnglish
Published IEEE 27.10.2024
Subjects
Online AccessGet full text
ISSN2575-8454
DOI10.1109/FOCS61266.2024.00090

Cover

Abstract The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical N^{O(\mathrm{I}\mathrm{o}\mathrm{g}N)} -time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p groups of class 2 and exponent p form a bottleneck case for group isomorphism in general. The recent breakthrough by Sun (STOC '23) presents an N^{O\left((\log N)^{5 / 6}\right)} -time algorithm for this group class. In this paper, we improve Sun's algorithm by presenting an N^{{\tilde{O}}\left((\log {N})^{1^{1 / 2}}\right)} -time algorithm for this group class. We also extend our result to the more general p -groups of Frattini class 2. Our algorithm is obtained by sharpening the key technical ingredients in Sun's algorithm and building connections with other research topics. One intriguing connection is with the maximal and non-commutative ranks of matrix spaces, which have recently received considerable attention in algebraic complexity and computational invariant theory. Results from the theory of Tensor Isomorphism complexity class (Grochow-Qiao, SIAM J. Comput. '23) are utilized to simplify the algorithm and achieve the extension to p -groups of Frattini class 2.
AbstractList The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical N^{O(\mathrm{I}\mathrm{o}\mathrm{g}N)} -time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p groups of class 2 and exponent p form a bottleneck case for group isomorphism in general. The recent breakthrough by Sun (STOC '23) presents an N^{O\left((\log N)^{5 / 6}\right)} -time algorithm for this group class. In this paper, we improve Sun's algorithm by presenting an N^{{\tilde{O}}\left((\log {N})^{1^{1 / 2}}\right)} -time algorithm for this group class. We also extend our result to the more general p -groups of Frattini class 2. Our algorithm is obtained by sharpening the key technical ingredients in Sun's algorithm and building connections with other research topics. One intriguing connection is with the maximal and non-commutative ranks of matrix spaces, which have recently received considerable attention in algebraic complexity and computational invariant theory. Results from the theory of Tensor Isomorphism complexity class (Grochow-Qiao, SIAM J. Comput. '23) are utilized to simplify the algorithm and achieve the extension to p -groups of Frattini class 2.
Author Zhang, Chuanqi
Qiao, Youming
Ivanyos, Gabor
Mendoza, Euan J.
Sun, Xiaorui
Author_xml – sequence: 1
  givenname: Gabor
  surname: Ivanyos
  fullname: Ivanyos, Gabor
  email: Gabor.Ivanyos@sztaki.hun-ren.hu
  organization: Hungarian Research Network,Budapest,Hungary
– sequence: 2
  givenname: Euan J.
  surname: Mendoza
  fullname: Mendoza, Euan J.
  email: Euan.J.Mendoza@student.uts.edu.au
  organization: University of Technology Sydney,Sydney,Australia
– sequence: 3
  givenname: Youming
  surname: Qiao
  fullname: Qiao, Youming
  email: Youming.Qiao@uts.edu.au
  organization: University of Technology Sydney,Sydney,Australia
– sequence: 4
  givenname: Xiaorui
  surname: Sun
  fullname: Sun, Xiaorui
  email: xiaorui@uic.edu
  organization: University of Illinois Chicago,Chicago,USA
– sequence: 5
  givenname: Chuanqi
  surname: Zhang
  fullname: Zhang, Chuanqi
  email: Chuanqi.Zhang@uts.edu.au
  organization: University of Technology Sydney,Sydney,Australia
BookMark eNotjMlOwzAUAA0Cibb0D3rwDyQ87zY3FJFSqVIPlHPleAGjZpEdDvw9IHqa0RxmiW6GcQgIbQjUhIB5aA_NqyRUypoC5TUAGLhCa6OMZowIIhUn12hBhRKV5oLfoWUpnwAcBPAFemxtmUPGuzL2Y54-UunxMZQ5De94jHiqtnn8msqft9nOvz3h5mxLwfQe3UZ7LmF94Qq9tc_H5qXaH7a75mlfJaLkXGknuYudEVSDY6YjznkeKQtCROWZM9oLq6n0zkYmTSSCQ8eC73RkTHtgK7T5_6YQwmnKqbf5-0RACUk4Yz9UAkmb
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS61266.2024.00090
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9798331516741
EISSN 2575-8454
EndPage 1424
ExternalDocumentID 10756143
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP200100950,LP220100332
  funderid: 10.13039/501100000923
– fundername: National Science Foundation
  grantid: 2240024
  funderid: 10.13039/100000001
GroupedDBID --Z
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i176t-8c64cfb95280c39b1ccd4f23e55f7d3c98d5a826dcaf369f1540b3edb8f338d03
IEDL.DBID RIE
IngestDate Wed Aug 27 03:04:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-8c64cfb95280c39b1ccd4f23e55f7d3c98d5a826dcaf369f1540b3edb8f338d03
PageCount 17
ParticipantIDs ieee_primary_10756143
PublicationCentury 2000
PublicationDate 2024-Oct.-27
PublicationDateYYYYMMDD 2024-10-27
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-27
  day: 27
PublicationDecade 2020
PublicationTitle Proceedings / annual Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
Score 2.2744765
Snippet The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical...
SourceID ieee
SourceType Publisher
StartPage 1408
SubjectTerms Algebra
Buildings
Complexity theory
computer algebra
Computer science
group isomorphism
matrix spaces
matrix tuples
Sun
Tensors
Testing
Title Faster Isomorphism Testing of p-Groups of Frattini Class 2
URI https://ieeexplore.ieee.org/document/10756143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ71M58RvcvDa2TYfbbwOyxQ2BTfYbeRTiqwda3fxrzfJ2g0EwVvIJeGFvN97yfv9HgAPjHKimcFBLDC2CUoSBjymMogkx9w6QxkhR3CeTOl4jl8XZNGQ1T0XRmvti8_00A39X74q5dY9ldkbnjjhStQBnSSlO7JW63Zt4BHihhsXhewxext9WPSmrgwhdgrZoXe7hw4qHkCyHpi2S-_qRr6G21oM5fcvVcZ_7-0UDA5cPfi-R6EzcKSLPui1zRpgc3f74GSyF2itzsFTxp1CAnypylVpTZ1XKzhzghvFJywNXAf-Tapy48zpHOdFDn3_TBgPwDx7no3GQdNGIcijhNZBKimWRjASp6FETERSKmxipAkxiUKSpYpwm2UoyQ2izNigKhRIK5Eam7-qEF2AblEW-hJAlhrCI6ww1U450IYKJNIW77hNKoVO8BUYOMss1zuljGVrlOs_5m_AsTsdhwVxcgu69War7yzI1-LeH-4PC5alGg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D-plOif-NgevnW3zo43XYdl0m4IbeBtJmkiRtcN2F_96k6zdQBC8hVwSXsj73kve9z0A7hjlRDGNvVBgbBKUyPd4SKUXSI65cYYyQJbgPJ7QwQw_vZP3mqzuuDBKKVd8pnp26P7y00Ku7FOZueGRFa5Eu2CPYIzJmq7VOF4Tevi4ZscFPrtPXvpvBr-pLUQIrUa27xzvtoeKg5CkDSbN4uvKkc_eqhI9-f1Ll_HfuzsC3S1bD75ucOgY7Ki8A9pNuwZY394OOBxvJFrLE_CQcKuRAIdlsSiMsbNyAadWciP_gIWGS8-9SpV2nFil4yzPoOugCcMumCWP0_7AqxspeFkQ0cqLJcVSC0bC2JeIiUDKFOsQKUJ0lCLJ4pRwk2ekkmtEmTZhlS-QSkWsTQab-ugUtPIiV2cAslgTHuAUU2W1A02wQAJlEI-btFKoCJ-DrrXMfLnWypg3Rrn4Y_4W7A-m49F8NJw8X4IDe1IWGcLoCrSqr5W6NpBfiRt30D_jDKhn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Faster+Isomorphism+Testing+of+p-Groups+of+Frattini+Class+2&rft.au=Ivanyos%2C+Gabor&rft.au=Mendoza%2C+Euan+J.&rft.au=Qiao%2C+Youming&rft.au=Sun%2C+Xiaorui&rft.date=2024-10-27&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=1408&rft.epage=1424&rft_id=info:doi/10.1109%2FFOCS61266.2024.00090&rft.externalDocID=10756143