Faster Isomorphism Testing of p-Groups of Frattini Class 2
The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical N^{O(\mathrm{I}\mathrm{o}\mathrm{g}N)} -time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p groups of class 2 and exponen...
Saved in:
| Published in | Proceedings / annual Symposium on Foundations of Computer Science pp. 1408 - 1424 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
27.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2575-8454 |
| DOI | 10.1109/FOCS61266.2024.00090 |
Cover
| Abstract | The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical N^{O(\mathrm{I}\mathrm{o}\mathrm{g}N)} -time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p groups of class 2 and exponent p form a bottleneck case for group isomorphism in general. The recent breakthrough by Sun (STOC '23) presents an N^{O\left((\log N)^{5 / 6}\right)} -time algorithm for this group class. In this paper, we improve Sun's algorithm by presenting an N^{{\tilde{O}}\left((\log {N})^{1^{1 / 2}}\right)} -time algorithm for this group class. We also extend our result to the more general p -groups of Frattini class 2. Our algorithm is obtained by sharpening the key technical ingredients in Sun's algorithm and building connections with other research topics. One intriguing connection is with the maximal and non-commutative ranks of matrix spaces, which have recently received considerable attention in algebraic complexity and computational invariant theory. Results from the theory of Tensor Isomorphism complexity class (Grochow-Qiao, SIAM J. Comput. '23) are utilized to simplify the algorithm and achieve the extension to p -groups of Frattini class 2. |
|---|---|
| AbstractList | The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical N^{O(\mathrm{I}\mathrm{o}\mathrm{g}N)} -time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p groups of class 2 and exponent p form a bottleneck case for group isomorphism in general. The recent breakthrough by Sun (STOC '23) presents an N^{O\left((\log N)^{5 / 6}\right)} -time algorithm for this group class. In this paper, we improve Sun's algorithm by presenting an N^{{\tilde{O}}\left((\log {N})^{1^{1 / 2}}\right)} -time algorithm for this group class. We also extend our result to the more general p -groups of Frattini class 2. Our algorithm is obtained by sharpening the key technical ingredients in Sun's algorithm and building connections with other research topics. One intriguing connection is with the maximal and non-commutative ranks of matrix spaces, which have recently received considerable attention in algebraic complexity and computational invariant theory. Results from the theory of Tensor Isomorphism complexity class (Grochow-Qiao, SIAM J. Comput. '23) are utilized to simplify the algorithm and achieve the extension to p -groups of Frattini class 2. |
| Author | Zhang, Chuanqi Qiao, Youming Ivanyos, Gabor Mendoza, Euan J. Sun, Xiaorui |
| Author_xml | – sequence: 1 givenname: Gabor surname: Ivanyos fullname: Ivanyos, Gabor email: Gabor.Ivanyos@sztaki.hun-ren.hu organization: Hungarian Research Network,Budapest,Hungary – sequence: 2 givenname: Euan J. surname: Mendoza fullname: Mendoza, Euan J. email: Euan.J.Mendoza@student.uts.edu.au organization: University of Technology Sydney,Sydney,Australia – sequence: 3 givenname: Youming surname: Qiao fullname: Qiao, Youming email: Youming.Qiao@uts.edu.au organization: University of Technology Sydney,Sydney,Australia – sequence: 4 givenname: Xiaorui surname: Sun fullname: Sun, Xiaorui email: xiaorui@uic.edu organization: University of Illinois Chicago,Chicago,USA – sequence: 5 givenname: Chuanqi surname: Zhang fullname: Zhang, Chuanqi email: Chuanqi.Zhang@uts.edu.au organization: University of Technology Sydney,Sydney,Australia |
| BookMark | eNotjMlOwzAUAA0Cibb0D3rwDyQ87zY3FJFSqVIPlHPleAGjZpEdDvw9IHqa0RxmiW6GcQgIbQjUhIB5aA_NqyRUypoC5TUAGLhCa6OMZowIIhUn12hBhRKV5oLfoWUpnwAcBPAFemxtmUPGuzL2Y54-UunxMZQ5De94jHiqtnn8msqft9nOvz3h5mxLwfQe3UZ7LmF94Qq9tc_H5qXaH7a75mlfJaLkXGknuYudEVSDY6YjznkeKQtCROWZM9oLq6n0zkYmTSSCQ8eC73RkTHtgK7T5_6YQwmnKqbf5-0RACUk4Yz9UAkmb |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/FOCS61266.2024.00090 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISBN | 9798331516741 |
| EISSN | 2575-8454 |
| EndPage | 1424 |
| ExternalDocumentID | 10756143 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Australian Research Council grantid: DP200100950,LP220100332 funderid: 10.13039/501100000923 – fundername: National Science Foundation grantid: 2240024 funderid: 10.13039/100000001 |
| GroupedDBID | --Z 6IE 6IH 6IK ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i176t-8c64cfb95280c39b1ccd4f23e55f7d3c98d5a826dcaf369f1540b3edb8f338d03 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 03:04:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-8c64cfb95280c39b1ccd4f23e55f7d3c98d5a826dcaf369f1540b3edb8f338d03 |
| PageCount | 17 |
| ParticipantIDs | ieee_primary_10756143 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-27 |
| PublicationDateYYYYMMDD | 2024-10-27 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / annual Symposium on Foundations of Computer Science |
| PublicationTitleAbbrev | FOCS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0040504 |
| Score | 2.2744765 |
| Snippet | The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1408 |
| SubjectTerms | Algebra Buildings Complexity theory computer algebra Computer science group isomorphism matrix spaces matrix tuples Sun Tensors Testing |
| Title | Faster Isomorphism Testing of p-Groups of Frattini Class 2 |
| URI | https://ieeexplore.ieee.org/document/10756143 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ71M58RvcvDa2TYfbbwOyxQ2BTfYbeRTiqwda3fxrzfJ2g0EwVvIJeGFvN97yfv9HgAPjHKimcFBLDC2CUoSBjymMogkx9w6QxkhR3CeTOl4jl8XZNGQ1T0XRmvti8_00A39X74q5dY9ldkbnjjhStQBnSSlO7JW63Zt4BHihhsXhewxext9WPSmrgwhdgrZoXe7hw4qHkCyHpi2S-_qRr6G21oM5fcvVcZ_7-0UDA5cPfi-R6EzcKSLPui1zRpgc3f74GSyF2itzsFTxp1CAnypylVpTZ1XKzhzghvFJywNXAf-Tapy48zpHOdFDn3_TBgPwDx7no3GQdNGIcijhNZBKimWRjASp6FETERSKmxipAkxiUKSpYpwm2UoyQ2izNigKhRIK5Eam7-qEF2AblEW-hJAlhrCI6ww1U450IYKJNIW77hNKoVO8BUYOMss1zuljGVrlOs_5m_AsTsdhwVxcgu69War7yzI1-LeH-4PC5alGg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D-plOif-NgevnW3zo43XYdl0m4IbeBtJmkiRtcN2F_96k6zdQBC8hVwSXsj73kve9z0A7hjlRDGNvVBgbBKUyPd4SKUXSI65cYYyQJbgPJ7QwQw_vZP3mqzuuDBKKVd8pnp26P7y00Ku7FOZueGRFa5Eu2CPYIzJmq7VOF4Tevi4ZscFPrtPXvpvBr-pLUQIrUa27xzvtoeKg5CkDSbN4uvKkc_eqhI9-f1Ll_HfuzsC3S1bD75ucOgY7Ki8A9pNuwZY394OOBxvJFrLE_CQcKuRAIdlsSiMsbNyAadWciP_gIWGS8-9SpV2nFil4yzPoOugCcMumCWP0_7AqxspeFkQ0cqLJcVSC0bC2JeIiUDKFOsQKUJ0lCLJ4pRwk2ekkmtEmTZhlS-QSkWsTQab-ugUtPIiV2cAslgTHuAUU2W1A02wQAJlEI-btFKoCJ-DrrXMfLnWypg3Rrn4Y_4W7A-m49F8NJw8X4IDe1IWGcLoCrSqr5W6NpBfiRt30D_jDKhn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Faster+Isomorphism+Testing+of+p-Groups+of+Frattini+Class+2&rft.au=Ivanyos%2C+Gabor&rft.au=Mendoza%2C+Euan+J.&rft.au=Qiao%2C+Youming&rft.au=Sun%2C+Xiaorui&rft.date=2024-10-27&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=1408&rft.epage=1424&rft_id=info:doi/10.1109%2FFOCS61266.2024.00090&rft.externalDocID=10756143 |