FedMDC: Enabling Communication-Efficient Federated Learning over Packet Lossy Networks via Multiple Description Coding

Federated learning (FL) generally suffers significant communication overhead from high-traffic gradient synchronization. The majority of existing studies on this problem aim at compressing gradients under the premise of reliable transmission. While transmission reliability can be ensured via TCP by...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE International Conference on Multimedia and Expo) pp. 1 - 7
Main Authors Guan, Yixuan, Liu, Xuefeng, Ren, Tao, Niu, Jianwei
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.07.2024
Subjects
Online AccessGet full text
ISSN1945-788X
DOI10.1109/ICME57554.2024.10687793

Cover

Abstract Federated learning (FL) generally suffers significant communication overhead from high-traffic gradient synchronization. The majority of existing studies on this problem aim at compressing gradients under the premise of reliable transmission. While transmission reliability can be ensured via TCP by default, the notably increased latency and retransmitted packets are prohibitive for most clients in FL. To tackle this issue, we propose FedMDC, a retransmission-free compression framework for FL over packet lossy networks. Given clients' limited resources, FedMDC adopts multiple description coding to encode gradients into redundant descriptions for erasure resilience simply through multiplying an overcomplete matrix; and then quantizes these descriptions for compression. To further reduce quantization distortion and computational overhead, a reduced decoding algorithm is developed by decoding the aggregation of all clients' encodings in conjunction with a customized dither quantization design. Besides, FedMDC explicitly supports adaptive bitrates subject to clients' heterogeneous communication budgets, which maximize resource utilization to facilitate distortion reduction and accelerate model convergence. Theoretical analysis and experimental results both demonstrate the effectiveness of our scheme.
AbstractList Federated learning (FL) generally suffers significant communication overhead from high-traffic gradient synchronization. The majority of existing studies on this problem aim at compressing gradients under the premise of reliable transmission. While transmission reliability can be ensured via TCP by default, the notably increased latency and retransmitted packets are prohibitive for most clients in FL. To tackle this issue, we propose FedMDC, a retransmission-free compression framework for FL over packet lossy networks. Given clients' limited resources, FedMDC adopts multiple description coding to encode gradients into redundant descriptions for erasure resilience simply through multiplying an overcomplete matrix; and then quantizes these descriptions for compression. To further reduce quantization distortion and computational overhead, a reduced decoding algorithm is developed by decoding the aggregation of all clients' encodings in conjunction with a customized dither quantization design. Besides, FedMDC explicitly supports adaptive bitrates subject to clients' heterogeneous communication budgets, which maximize resource utilization to facilitate distortion reduction and accelerate model convergence. Theoretical analysis and experimental results both demonstrate the effectiveness of our scheme.
Author Guan, Yixuan
Liu, Xuefeng
Niu, Jianwei
Ren, Tao
Author_xml – sequence: 1
  givenname: Yixuan
  surname: Guan
  fullname: Guan, Yixuan
  email: guanyx@buaa.edu.cn
  organization: Beihang University,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering,Beijing,China
– sequence: 2
  givenname: Xuefeng
  surname: Liu
  fullname: Liu, Xuefeng
  email: liu_xuefeng@buaa.edu.cn
  organization: Beihang University,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering,Beijing,China
– sequence: 3
  givenname: Tao
  surname: Ren
  fullname: Ren, Tao
  email: rentao22@iscas.ac.cn
  organization: Institute of Software Chinese Academy of Sciences,State Key Laboratory of Intelligent Game,Beijing,China
– sequence: 4
  givenname: Jianwei
  surname: Niu
  fullname: Niu, Jianwei
  email: niujianwei@buaa.edu.cn
  organization: Beihang University,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering,Beijing,China
BookMark eNo1kNFOwyAYhdFo4px7AxN5gU4oMIp3puvUpFMvNPFuofTH4Dq6AJvZ29tFPTfn5jvfxblEZ773gNANJVNKibp9KpeVkELwaU5yPqVkVkip2AmaKKkKJghThApxikZUcZHJovi4QJMYv8gQybkibIT2C2iX8_IOV143nfOfuOw3m513RifX-6yy1hkHPuEBhKATtLgGHfwR7fcQ8Ks2a0i47mM84GdI331YR7x3Gi93XXLbDvAcogluexQO-naYXqFzq7sIk78eo_dF9VY-ZvXLw1N5X2eOylnKCsMZYyK3RjeGgyRc24bOSNNIQlTBuQFjmbTUmtZYq6lgubC5zDltCiEpG6PrX68DgNU2uI0Oh9X_VewHNe1hbA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICME57554.2024.10687793
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
Institute of Electrical and Electronics Engineers Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350390155
EISSN 1945-788X
EndPage 7
ExternalDocumentID 10687793
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i176t-8c433352fcabc4e704afb160bb7009844cecf37f1fcdcffa15325f27241b85713
IEDL.DBID RIE
IngestDate Wed Aug 27 02:20:32 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-8c433352fcabc4e704afb160bb7009844cecf37f1fcdcffa15325f27241b85713
PageCount 7
ParticipantIDs ieee_primary_10687793
PublicationCentury 2000
PublicationDate 2024-July-15
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-15
  day: 15
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Multimedia and Expo)
PublicationTitleAbbrev ICME
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744903
Score 1.8798766
Snippet Federated learning (FL) generally suffers significant communication overhead from high-traffic gradient synchronization. The majority of existing studies on...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Communication Overhead
Decoding
Distortion
Encoding
Federated learning
Multiple Description Coding
Packet Erasure
Propagation losses
Quantization (signal)
Reliability
Resilience
Resource management
Synchronization
Title FedMDC: Enabling Communication-Efficient Federated Learning over Packet Lossy Networks via Multiple Description Coding
URI https://ieeexplore.ieee.org/document/10687793
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5sT57qUnFnDl4Ts0xmEq81oYopPVjorcxMZqQIrWhS0F_ve1kqFQQvIYQsj8nb5s33vSHkhkWJNuD3nZix0GF4SFRgHQ-SZyZjy-MC2cj5hI9n7HEezVuyes2FMcbU4DPj4mm9ll-sdYWlMrBwHgtQqB7piZg3ZK1tQQViIUu8sMVw-V5y-zDKU8hG6tJJwNzu6Z19VOowkg3IpBOgQY-8ulWpXP31qzfjvyU8IMMfxh6dbmPRIdkzqyMy6LZsoK0FH5NNZor8fnRHU-RMwa10hyHipHVHCfgGzbDLBCSiBW1bsL5QRHvSqQS7L-kTBNdPOmlA5B90s5Q0b7GJFOaynS-C16NAQzLL0ufR2Gm3XnCWvuClE2sWIhvLaqk0M8Jj0iqfe0oJ7EDKmDbahsL6VhfaWgl-M4hsICAfUHEEE98T0l-tV-aUUAPaUEhrldICHURS-ExzzEy0FZbzMzLEcVy8Nd01Ft0Qnv9x_YLs4-_E-qofXZJ--V6ZK0gMSnVdK8Q3O1u5Gw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oPeipPmp8uwevINBlF7xWSKuF9NAmvTXssmsak9YobaK_3hkeNTUx8UIIgWWyzGuH75sl5I75odLg962Asa7F8BBKz1gOJM8sCwwPcmQjJynvT9jT1J_WZPWSC6O1LsFn2sbT8l9-vlQrLJWBhfNAgELtkj0fhvUrutampALRkIVOt0ZxuU54P-glEeQjZfHEY3bz_NZOKmUgidskbUSo8COv9qqQtvr61Z3x3zIeks4PZ4-ONtHoiOzoxTFpN5s20NqGT8g61nny2HugEbKm4Fa6xRGxorKnBLyDxthnAlLRnNZNWF8o4j3pKAPLL-gQwusnTSsY-QddzzOa1OhECqvZxhvB8ChQh0ziaNzrW_XmC9bcFbywAsW6yMcyKpOKaeGwzEiXO1IK7EHKmNLKdIVxjcqVMRl4Ts83noCMQAY-LH1PSWuxXOgzQjXoQ54ZI6US6CLC3GWKY26ijDCcn5MOzuPsreqvMWum8OKP67dkvz9OhrPhIH2-JAf4abHa6vpXpFW8r_Q1pAmFvCmV4xsWK7xo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Multimedia+and+Expo%29&rft.atitle=FedMDC%3A+Enabling+Communication-Efficient+Federated+Learning+over+Packet+Lossy+Networks+via+Multiple+Description+Coding&rft.au=Guan%2C+Yixuan&rft.au=Liu%2C+Xuefeng&rft.au=Ren%2C+Tao&rft.au=Niu%2C+Jianwei&rft.date=2024-07-15&rft.pub=IEEE&rft.eissn=1945-788X&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICME57554.2024.10687793&rft.externalDocID=10687793