FedMDC: Enabling Communication-Efficient Federated Learning over Packet Lossy Networks via Multiple Description Coding
Federated learning (FL) generally suffers significant communication overhead from high-traffic gradient synchronization. The majority of existing studies on this problem aim at compressing gradients under the premise of reliable transmission. While transmission reliability can be ensured via TCP by...
Saved in:
| Published in | Proceedings (IEEE International Conference on Multimedia and Expo) pp. 1 - 7 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
15.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1945-788X |
| DOI | 10.1109/ICME57554.2024.10687793 |
Cover
| Abstract | Federated learning (FL) generally suffers significant communication overhead from high-traffic gradient synchronization. The majority of existing studies on this problem aim at compressing gradients under the premise of reliable transmission. While transmission reliability can be ensured via TCP by default, the notably increased latency and retransmitted packets are prohibitive for most clients in FL. To tackle this issue, we propose FedMDC, a retransmission-free compression framework for FL over packet lossy networks. Given clients' limited resources, FedMDC adopts multiple description coding to encode gradients into redundant descriptions for erasure resilience simply through multiplying an overcomplete matrix; and then quantizes these descriptions for compression. To further reduce quantization distortion and computational overhead, a reduced decoding algorithm is developed by decoding the aggregation of all clients' encodings in conjunction with a customized dither quantization design. Besides, FedMDC explicitly supports adaptive bitrates subject to clients' heterogeneous communication budgets, which maximize resource utilization to facilitate distortion reduction and accelerate model convergence. Theoretical analysis and experimental results both demonstrate the effectiveness of our scheme. |
|---|---|
| AbstractList | Federated learning (FL) generally suffers significant communication overhead from high-traffic gradient synchronization. The majority of existing studies on this problem aim at compressing gradients under the premise of reliable transmission. While transmission reliability can be ensured via TCP by default, the notably increased latency and retransmitted packets are prohibitive for most clients in FL. To tackle this issue, we propose FedMDC, a retransmission-free compression framework for FL over packet lossy networks. Given clients' limited resources, FedMDC adopts multiple description coding to encode gradients into redundant descriptions for erasure resilience simply through multiplying an overcomplete matrix; and then quantizes these descriptions for compression. To further reduce quantization distortion and computational overhead, a reduced decoding algorithm is developed by decoding the aggregation of all clients' encodings in conjunction with a customized dither quantization design. Besides, FedMDC explicitly supports adaptive bitrates subject to clients' heterogeneous communication budgets, which maximize resource utilization to facilitate distortion reduction and accelerate model convergence. Theoretical analysis and experimental results both demonstrate the effectiveness of our scheme. |
| Author | Guan, Yixuan Liu, Xuefeng Niu, Jianwei Ren, Tao |
| Author_xml | – sequence: 1 givenname: Yixuan surname: Guan fullname: Guan, Yixuan email: guanyx@buaa.edu.cn organization: Beihang University,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering,Beijing,China – sequence: 2 givenname: Xuefeng surname: Liu fullname: Liu, Xuefeng email: liu_xuefeng@buaa.edu.cn organization: Beihang University,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering,Beijing,China – sequence: 3 givenname: Tao surname: Ren fullname: Ren, Tao email: rentao22@iscas.ac.cn organization: Institute of Software Chinese Academy of Sciences,State Key Laboratory of Intelligent Game,Beijing,China – sequence: 4 givenname: Jianwei surname: Niu fullname: Niu, Jianwei email: niujianwei@buaa.edu.cn organization: Beihang University,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering,Beijing,China |
| BookMark | eNo1kNFOwyAYhdFo4px7AxN5gU4oMIp3puvUpFMvNPFuofTH4Dq6AJvZ29tFPTfn5jvfxblEZ773gNANJVNKibp9KpeVkELwaU5yPqVkVkip2AmaKKkKJghThApxikZUcZHJovi4QJMYv8gQybkibIT2C2iX8_IOV143nfOfuOw3m513RifX-6yy1hkHPuEBhKATtLgGHfwR7fcQ8Ks2a0i47mM84GdI331YR7x3Gi93XXLbDvAcogluexQO-naYXqFzq7sIk78eo_dF9VY-ZvXLw1N5X2eOylnKCsMZYyK3RjeGgyRc24bOSNNIQlTBuQFjmbTUmtZYq6lgubC5zDltCiEpG6PrX68DgNU2uI0Oh9X_VewHNe1hbA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICME57554.2024.10687793 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings Institute of Electrical and Electronics Engineers Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350390155 |
| EISSN | 1945-788X |
| EndPage | 7 |
| ExternalDocumentID | 10687793 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i176t-8c433352fcabc4e704afb160bb7009844cecf37f1fcdcffa15325f27241b85713 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:20:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-8c433352fcabc4e704afb160bb7009844cecf37f1fcdcffa15325f27241b85713 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10687793 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-July-15 |
| PublicationDateYYYYMMDD | 2024-07-15 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE International Conference on Multimedia and Expo) |
| PublicationTitleAbbrev | ICME |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000744903 |
| Score | 1.8798766 |
| Snippet | Federated learning (FL) generally suffers significant communication overhead from high-traffic gradient synchronization. The majority of existing studies on... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Communication Overhead Decoding Distortion Encoding Federated learning Multiple Description Coding Packet Erasure Propagation losses Quantization (signal) Reliability Resilience Resource management Synchronization |
| Title | FedMDC: Enabling Communication-Efficient Federated Learning over Packet Lossy Networks via Multiple Description Coding |
| URI | https://ieeexplore.ieee.org/document/10687793 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5sT57qUnFnDl4Ts0xmEq81oYopPVjorcxMZqQIrWhS0F_ve1kqFQQvIYQsj8nb5s33vSHkhkWJNuD3nZix0GF4SFRgHQ-SZyZjy-MC2cj5hI9n7HEezVuyes2FMcbU4DPj4mm9ll-sdYWlMrBwHgtQqB7piZg3ZK1tQQViIUu8sMVw-V5y-zDKU8hG6tJJwNzu6Z19VOowkg3IpBOgQY-8ulWpXP31qzfjvyU8IMMfxh6dbmPRIdkzqyMy6LZsoK0FH5NNZor8fnRHU-RMwa10hyHipHVHCfgGzbDLBCSiBW1bsL5QRHvSqQS7L-kTBNdPOmlA5B90s5Q0b7GJFOaynS-C16NAQzLL0ufR2Gm3XnCWvuClE2sWIhvLaqk0M8Jj0iqfe0oJ7EDKmDbahsL6VhfaWgl-M4hsICAfUHEEE98T0l-tV-aUUAPaUEhrldICHURS-ExzzEy0FZbzMzLEcVy8Nd01Ft0Qnv9x_YLs4-_E-qofXZJ--V6ZK0gMSnVdK8Q3O1u5Gw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oPeipPmp8uwevINBlF7xWSKuF9NAmvTXssmsak9YobaK_3hkeNTUx8UIIgWWyzGuH75sl5I75odLg962Asa7F8BBKz1gOJM8sCwwPcmQjJynvT9jT1J_WZPWSC6O1LsFn2sbT8l9-vlQrLJWBhfNAgELtkj0fhvUrutampALRkIVOt0ZxuU54P-glEeQjZfHEY3bz_NZOKmUgidskbUSo8COv9qqQtvr61Z3x3zIeks4PZ4-ONtHoiOzoxTFpN5s20NqGT8g61nny2HugEbKm4Fa6xRGxorKnBLyDxthnAlLRnNZNWF8o4j3pKAPLL-gQwusnTSsY-QddzzOa1OhECqvZxhvB8ChQh0ziaNzrW_XmC9bcFbywAsW6yMcyKpOKaeGwzEiXO1IK7EHKmNLKdIVxjcqVMRl4Ts83noCMQAY-LH1PSWuxXOgzQjXoQ54ZI6US6CLC3GWKY26ijDCcn5MOzuPsreqvMWum8OKP67dkvz9OhrPhIH2-JAf4abHa6vpXpFW8r_Q1pAmFvCmV4xsWK7xo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Multimedia+and+Expo%29&rft.atitle=FedMDC%3A+Enabling+Communication-Efficient+Federated+Learning+over+Packet+Lossy+Networks+via+Multiple+Description+Coding&rft.au=Guan%2C+Yixuan&rft.au=Liu%2C+Xuefeng&rft.au=Ren%2C+Tao&rft.au=Niu%2C+Jianwei&rft.date=2024-07-15&rft.pub=IEEE&rft.eissn=1945-788X&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICME57554.2024.10687793&rft.externalDocID=10687793 |