Global-Local Information Interactive Learning Network for SAR Target Recognition with Limited Samples

Deep learning-based synthetic aperture radar (SAR) automatic target recognition (ATR) have shown great potential recently, however, the performance of these methods is subject to the number of annotated samples. In real application scenarios, it tends to acquire limited number of samples due to the...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Geoscience and Remote Sensing Symposium proceedings pp. 9858 - 9861
Main Authors Miao, Lei, Ren, Haohao, Li, Yue, Zou, Lin, Wang, Xuegang
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.07.2024
Subjects
Online AccessGet full text
ISSN2153-7003
DOI10.1109/IGARSS53475.2024.10642273

Cover

Abstract Deep learning-based synthetic aperture radar (SAR) automatic target recognition (ATR) have shown great potential recently, however, the performance of these methods is subject to the number of annotated samples. In real application scenarios, it tends to acquire limited number of samples due to the acquisition cost, in which case the exising ATR method is susceptible to over-fitting. To achieve SAR target recognition robustly in the case of limited samples, this paper proposes a global-local information interactive learning network. Specifically, we first develop a global-local interactive learning architecture, which is dedicated to extract global-local discriminative feature by interactively integrating the merits of local convolution and sparse self-attention. Then, a hierarchical feature discrimination module is proposed to improve intra-class compactness and inter-class divergence, thereby boosting the recognition performance of the ATR model. Evaluation experiments on the moving and stationary target acquisition and recognition (MSTAR) dataset illustrate that the proposed method is superior to advanced SAR ATR methods under the condition of limited samples.
AbstractList Deep learning-based synthetic aperture radar (SAR) automatic target recognition (ATR) have shown great potential recently, however, the performance of these methods is subject to the number of annotated samples. In real application scenarios, it tends to acquire limited number of samples due to the acquisition cost, in which case the exising ATR method is susceptible to over-fitting. To achieve SAR target recognition robustly in the case of limited samples, this paper proposes a global-local information interactive learning network. Specifically, we first develop a global-local interactive learning architecture, which is dedicated to extract global-local discriminative feature by interactively integrating the merits of local convolution and sparse self-attention. Then, a hierarchical feature discrimination module is proposed to improve intra-class compactness and inter-class divergence, thereby boosting the recognition performance of the ATR model. Evaluation experiments on the moving and stationary target acquisition and recognition (MSTAR) dataset illustrate that the proposed method is superior to advanced SAR ATR methods under the condition of limited samples.
Author Miao, Lei
Ren, Haohao
Li, Yue
Zou, Lin
Wang, Xuegang
Author_xml – sequence: 1
  givenname: Lei
  surname: Miao
  fullname: Miao, Lei
  organization: University of Electronic Science and Technology of China,School of Information and Communication Engineering,Chengdu,China,611731
– sequence: 2
  givenname: Haohao
  surname: Ren
  fullname: Ren, Haohao
  email: haohao_ren@uestc.edu.cn
  organization: University of Electronic Science and Technology of China,School of Information and Communication Engineering,Chengdu,China,611731
– sequence: 3
  givenname: Yue
  surname: Li
  fullname: Li, Yue
  organization: University of Electronic Science and Technology of China,School of Information and Communication Engineering,Chengdu,China,611731
– sequence: 4
  givenname: Lin
  surname: Zou
  fullname: Zou, Lin
  organization: University of Electronic Science and Technology of China,School of Information and Communication Engineering,Chengdu,China,611731
– sequence: 5
  givenname: Xuegang
  surname: Wang
  fullname: Wang, Xuegang
  organization: University of Electronic Science and Technology of China,School of Information and Communication Engineering,Chengdu,China,611731
BookMark eNo1kMlOwzAURQ0Cibb0D1iYD0jxEMfxsqqgVIpASsq6eo1fiiFxKsei4u8J0-oe6Q6LOyUXvvdIyC1nC86Zudusl2VVKZlqtRBMpAvOslQILc_I3GiTS8VkxqRQ52QiuJKJZkxekekwvI2QC8YmBNdtv4c2KfoaWrrxTR86iK73I0cMUEf3gbRACN75A33CeOrDOx1jtFqWdAvhgJGWWPcH7356JxdfaeE6F9HSCrpji8M1uWygHXD-pzPy8nC_XT0mxfN6s1oWieM6i0kurRBC5anNmbZMA-QW0lrkCCmXhtdmbyFjplHGcpASmzpj2GRqbH87ckZufncdIu6OwXUQPnf_t8gv4xlayg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS53475.2024.10642273
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 9798350360325
EISSN 2153-7003
EndPage 9861
ExternalDocumentID 10642273
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i176t-83d222584d807d07aa8da4c28ea41391c9bda609f59d1a33efc60ef65176bda63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:03:09 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-83d222584d807d07aa8da4c28ea41391c9bda609f59d1a33efc60ef65176bda63
PageCount 4
ParticipantIDs ieee_primary_10642273
PublicationCentury 2000
PublicationDate 2024-July-7
PublicationDateYYYYMMDD 2024-07-07
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-7
  day: 07
PublicationDecade 2020
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.878719
Snippet Deep learning-based synthetic aperture radar (SAR) automatic target recognition (ATR) have shown great potential recently, however, the performance of these...
SourceID ieee
SourceType Publisher
StartPage 9858
SubjectTerms Accuracy
Automatic target recognition (ATR)
Boosting
Convolution
Costs
Feature extraction
Geoscience and remote sensing
Limited samples
Synthetic aperture radar (SAR)
Target recognition
Title Global-Local Information Interactive Learning Network for SAR Target Recognition with Limited Samples
URI https://ieeexplore.ieee.org/document/10642273
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uoPjk18RvIviami5p0j4OcZuiQ9YN9jbycSsibKLdg_56k7RVFATfSttLSy7Nyb095wShixik1VYbIlVBval2SlRWMMIhcXWciikIr3e-H4nhlN_OklktVg9aGAAI5DOI_GH4l2-XZuVbZe4Ld6tlh7ct1JKpqMRazbTLHJTRDXRem2he3gx64zxPGJeJqwK7PGqCf2yjElCkv4VGzfMr8shztCp1ZD5-WTP--wW3UedbsIcfvqBoB63BYhetD8Kuve97CCpnf3LngQvXCiSfERwagirMebi2Wn3Eo4oajt1tOO-N8SSwxfG44Rq5ON--xbU4CufKWwy_ddC0fz25GpJ6fwXyFEtRkpRZX-2l3KZUWiqVSq3ippuCctCWxSbTVgmaFUlmY8UYFEZQKETiov0Vto_ai-UCDhDWpmCWZQXXnHMDNDNCc9211FK3IAB1iDp-tOYvlYXGvBmooz_OH6NNn7TAi5UnqF2-ruDUoX-pz0LWPwGYnLCp
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7oxMuTt4l3I_jami5JL49D3EW3IusGexu5VUTYRLsH_fUmaasoCL6VtgdCTpvv5OR83wG4CnSkhBLSi3iOrah27PEkJx7VzOzjeIB1aPnOwzTsTejdlE0rsrrjwmitXfGZ9u2lO8tXC7m0qTLzh5to2eDtKqwxSikr6Vr1wksMmOENuKxkNK_73fYoyxihETP7wBb1a_MfjVQcjnS2Ia1HUJaPPPvLQvjy45c447-HuAPNb8oeevgCo11Y0fM9WO-6vr3v-6BLbX9vYKELVRwk6xPkUoLcrXqoElt9RGlZHI7Mayhrj9DY1YujUV1tZOxsAhdV9CiUcSsy_NaESed2fNPzqg4L3lMQhYUXE2X3ezFVMY4UjjiPFaeyFWtuwC0JZCIUD3GSs0QFnBCdyxDrPGTG2j4hB9CYL-b6EJCQOVEkyakwnpEaJzIUVLQUVtiEBJofQdPO1uylFNGY1RN1_Mf9C9jsjYeD2aCf3p_AlnWgq5KNTqFRvC71mYkFCnHuvoBPBkmz9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Global-Local+Information+Interactive+Learning+Network+for+SAR+Target+Recognition+with+Limited+Samples&rft.au=Miao%2C+Lei&rft.au=Ren%2C+Haohao&rft.au=Li%2C+Yue&rft.au=Zou%2C+Lin&rft.date=2024-07-07&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=9858&rft.epage=9861&rft_id=info:doi/10.1109%2FIGARSS53475.2024.10642273&rft.externalDocID=10642273