rasterMiner: An Open-Source Python Library to Discover Knowledge From Raster Imagery Data

This paper introduces "rasterMiner," a comprehensive open-source Python software for extracting insights from satellite imagery data. This software offers 30 knowledge discovery algorithms spanning supervised and unsupervised techniques like classification, clustering, pattern mining, imag...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE Space, Aerospace and Defence Conference (SPACE) pp. 1160 - 1163
Main Authors Veena, Pamalla, Kiran, Rage Uday, Yoshiko, Ogawa, Makiko, Ohtake
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.07.2024
Subjects
Online AccessGet full text
DOI10.1109/SPACE63117.2024.10667674

Cover

Abstract This paper introduces "rasterMiner," a comprehensive open-source Python software for extracting insights from satellite imagery data. This software offers 30 knowledge discovery algorithms spanning supervised and unsupervised techniques like classification, clustering, pattern mining, image fusion, and imputation. Notable attributes encompass an intuitive GUI for seamless algorithm selection, the adaptability of being accessed as a Python library, and the ability to export findings to standard CSV files for visualization in GIS software. Our software is bolstered by extensive support resources, including user and developer guides and a robust bug-reporting system.
AbstractList This paper introduces "rasterMiner," a comprehensive open-source Python software for extracting insights from satellite imagery data. This software offers 30 knowledge discovery algorithms spanning supervised and unsupervised techniques like classification, clustering, pattern mining, image fusion, and imputation. Notable attributes encompass an intuitive GUI for seamless algorithm selection, the adaptability of being accessed as a Python library, and the ability to export findings to standard CSV files for visualization in GIS software. Our software is bolstered by extensive support resources, including user and developer guides and a robust bug-reporting system.
Author Makiko, Ohtake
Kiran, Rage Uday
Veena, Pamalla
Yoshiko, Ogawa
Author_xml – sequence: 1
  givenname: Pamalla
  surname: Veena
  fullname: Veena, Pamalla
  email: rage.vinny@gmail.com
  organization: The University of Aizu,Aizu-Wakamatsu,Japan
– sequence: 2
  givenname: Rage Uday
  surname: Kiran
  fullname: Kiran, Rage Uday
  email: udayrage@u-aizu.ac.jp
  organization: The University of Aizu,Aizu-Wakamatsu,Japan
– sequence: 3
  givenname: Ogawa
  surname: Yoshiko
  fullname: Yoshiko, Ogawa
  email: yoshiko@u-aizu.ac.jp
  organization: The University of Aizu,Aizu-Wakamatsu,Japan
– sequence: 4
  givenname: Ohtake
  surname: Makiko
  fullname: Makiko, Ohtake
  email: makiko-o@u-aizu.ac.jp
  organization: The University of Aizu,Aizu-Wakamatsu,Japan
BookMark eNo1j8tOwzAUBY0ECyj9Axb-gYTrOPGDXZS2UFHUisKCVeUk18VSY1dOAPXviXiszmY0mnNFzn3wSAhlkDIG-na7Kau54IzJNIMsTxkIIYXMz8hUS614AVxIrsQleYumHzA-OY_xjpaero_ok234iA3SzWl4D56uXB1NPNEh0Jnrm_CJkT768HXAdo90EUNHn38sdNmZPY7kzAzmmlxYc-hx-rcT8rqYv1QPyWp9v6zKVeKYFEMirVGFVqCaNtdZUygoOLNg-ViY1bU11tSA3Na2bVsYwyVT2OhCMcisRs4n5ObX6xBxd4yuG1t3_4_5Nx4VURE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SPACE63117.2024.10667674
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350367386
EndPage 1163
ExternalDocumentID 10667674
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-7fa859808cd492c580531f0f33672bbfafab0e3fbfddd0503718ec958102f9e33
IEDL.DBID RIE
IngestDate Wed Sep 18 05:50:19 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-7fa859808cd492c580531f0f33672bbfafab0e3fbfddd0503718ec958102f9e33
PageCount 4
ParticipantIDs ieee_primary_10667674
PublicationCentury 2000
PublicationDate 2024-July-22
PublicationDateYYYYMMDD 2024-07-22
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-22
  day: 22
PublicationDecade 2020
PublicationTitle 2024 IEEE Space, Aerospace and Defence Conference (SPACE)
PublicationTitleAbbrev SPACE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8800603
Snippet This paper introduces "rasterMiner," a comprehensive open-source Python software for extracting insights from satellite imagery data. This software offers 30...
SourceID ieee
SourceType Publisher
StartPage 1160
SubjectTerms artificial intelligence
Big data
Classification algorithms
Clustering algorithms
Knowledge discovery
Libraries
machine learning
open-source
pattern mining
raster data
Satellite images
Software
Software algorithms
space
Title rasterMiner: An Open-Source Python Library to Discover Knowledge From Raster Imagery Data
URI https://ieeexplore.ieee.org/document/10667674
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9esu5vneit9UJWWYi3UU0myCRTprtTtof56d7ZdRUHwFkJIQoZhksn3fYPQjReh0soYEnFrCItSQbRmCWHCcC5lYqgDcvJwJAZT9jDjsx1ZveLCOOcq8JkLoFn95ae5XUOqrPRwQGRK1kANqcSWrFWjc8LkdjJud3qCRpEs330xC-rhPwqnVHGjf4BG9YpbuMhrsC5MYD9-iTH-e0uHqPVN0cPjr-BzhPZcdoxeVhp0D4ZA6LvD7QwDXIRMqvw8Hm9AJgDviAq4yHF38W4BwYkf68Qa7q_yJX6qZsH3S9C32OCuLnQLTfu9586A7GonkEUkRUGk14onKoTaRElsuQJn86GnVMjYGK-9NqGj3vg0TUETpoxRziZclRcOnzhKT1AzyzN3irCKKNPwASecZra0bCottyDtGEoZMXuGWnAu87etPMa8PpLzP_ov0D6YBxKkcXyJmsVq7a7KyF6Y68qin6QIpJc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLym7m5eu95KH1T7oNgW6qkk2QSKdFfq9lB_vTvbrqIgeAuBPMgwTDL5vm8QunPCC1WoNfG50YT5sSBKsYgwoTmXMtLUAjm5PxCdCXua8umWrF5wYay1BfjM1qBZ_OXHqVlBqiz3cEBkSraL9jhjjG_oWiU-x4vuR8N6oyWo78v85RewWjngR-mUInK0D9GgXHMDGHmtrTJdMx-_5Bj_vakjVP0m6eHhV_g5Rjs2OUEvSwXKB32g9D3geoIBMEJGRYYeD9cgFIC3VAWcpbg5fzeA4cTdMrWG28t0gZ-LWfDjAhQu1ripMlVFk3Zr3OiQbfUEMvelyIh0KuRR6EF1oigwPAR3c56jVMhAa6ec0p6lTrs4jkEVJo9S1kQ8zK8cLrKUnqJKkib2DOHQp0zBF5ywipnctrE03IC4oyelz8w5qsK5zN42Ahmz8kgu_ui_Rfudcb836z0OupfoAEwF6dIguEKVbLmy13mcz_RNYd1PchKn5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Space%2C+Aerospace+and+Defence+Conference+%28SPACE%29&rft.atitle=rasterMiner%3A+An+Open-Source+Python+Library+to+Discover+Knowledge+From+Raster+Imagery+Data&rft.au=Veena%2C+Pamalla&rft.au=Kiran%2C+Rage+Uday&rft.au=Yoshiko%2C+Ogawa&rft.au=Makiko%2C+Ohtake&rft.date=2024-07-22&rft.pub=IEEE&rft.spage=1160&rft.epage=1163&rft_id=info:doi/10.1109%2FSPACE63117.2024.10667674&rft.externalDocID=10667674