Mapping the Evolution and Future Trajectories of Network Mining: A Scientometric Analysis (2004-2023)

A Network Mining, a pivotal element of business intelligence, has been the subject of extensive study by both academic institutions and industry for an extended period. This paper presents a scientometric analysis spanning two decades to shed light on the evolving landscapes, focal points of researc...

Full description

Saved in:
Bibliographic Details
Published inInternational Symposium on Power Electronics, Electrical Drives, Automation and Motion pp. 468 - 473
Main Authors Wang, Xianghan, Long, Sheng, Zeng, Li, Chen, Chao, Yishan, L.
Format Conference Proceeding
LanguageEnglish
Published IEEE 19.06.2024
Subjects
Online AccessGet full text
ISSN2835-8457
DOI10.1109/SPEEDAM61530.2024.10609054

Cover

Abstract A Network Mining, a pivotal element of business intelligence, has been the subject of extensive study by both academic institutions and industry for an extended period. This paper presents a scientometric analysis spanning two decades to shed light on the evolving landscapes, focal points of research, and novel trends within this domain. The analysis utilized a dataset curated from the Web of Science, encompassing the years 2004 to 2023. This study goes beyond elementary scientific output assessments, employing advanced scientometric tools like CiteSpace, VOSViewer, and Bibliometrix to dissect the intellectual structure of Network Mining. The findings indicate a substantial increase in Network Mining research over the past twenty years, with a corpus of 2,110 papers emanating from 77 countries/territories. The United States, China, India, Japan, and France emerge as the top five most prolific contributors. The research domain encompasses 2,028 institutes, with the University of Illinois, Carnegie Mellon University, Chinese Academy of Sciences, Tsinghua University, and Arizona State University being the most influential. Furthermore, keywords exhibiting the most significant citation bursts, such as Social Network Mining, Anomaly Detection, Task Analysis, Network Embedding, Network Representation Learning, and Graph Neural Networks, were identified, signifying the cutting-edge directions in Network Mining research. The insights provided in this paper aim to bolster ongoing research endeavors in Network Mining, serving as a beacon for future scholarly exploration.
AbstractList A Network Mining, a pivotal element of business intelligence, has been the subject of extensive study by both academic institutions and industry for an extended period. This paper presents a scientometric analysis spanning two decades to shed light on the evolving landscapes, focal points of research, and novel trends within this domain. The analysis utilized a dataset curated from the Web of Science, encompassing the years 2004 to 2023. This study goes beyond elementary scientific output assessments, employing advanced scientometric tools like CiteSpace, VOSViewer, and Bibliometrix to dissect the intellectual structure of Network Mining. The findings indicate a substantial increase in Network Mining research over the past twenty years, with a corpus of 2,110 papers emanating from 77 countries/territories. The United States, China, India, Japan, and France emerge as the top five most prolific contributors. The research domain encompasses 2,028 institutes, with the University of Illinois, Carnegie Mellon University, Chinese Academy of Sciences, Tsinghua University, and Arizona State University being the most influential. Furthermore, keywords exhibiting the most significant citation bursts, such as Social Network Mining, Anomaly Detection, Task Analysis, Network Embedding, Network Representation Learning, and Graph Neural Networks, were identified, signifying the cutting-edge directions in Network Mining research. The insights provided in this paper aim to bolster ongoing research endeavors in Network Mining, serving as a beacon for future scholarly exploration.
Author Zeng, Li
Yishan, L.
Long, Sheng
Wang, Xianghan
Chen, Chao
Author_xml – sequence: 1
  givenname: Xianghan
  surname: Wang
  fullname: Wang, Xianghan
  email: wangxianghan13@nudt.edu.cn
  organization: National University of Defense Technology,Laboratory for Big Data and Decision,Changsha,China
– sequence: 2
  givenname: Sheng
  surname: Long
  fullname: Long, Sheng
  email: longsheng@nudt.edu.cn
  organization: National University of Defense Technology,Laboratory for Big Data and Decision,Changsha,China
– sequence: 3
  givenname: Li
  surname: Zeng
  fullname: Zeng, Li
  email: zlli@nudt.edu.cn
  organization: National University of Defense Technology,Laboratory for Big Data and Decision,Changsha,China
– sequence: 4
  givenname: Chao
  surname: Chen
  fullname: Chen, Chao
  email: chenc1997@nudt.edu.cn
  organization: National University of Defense Technology,Laboratory for Big Data and Decision,Changsha,China
– sequence: 5
  givenname: L.
  surname: Yishan
  fullname: Yishan, L.
  email: liyishan@nudt.edu.cn
  organization: National University of Defense Technology,Laboratory for Big Data and Decision,Changsha,China
BookMark eNo1kMtOwzAURA0CiVL6BywsVrBIuX7EidlFJQWkFpBa1pXjXINL61SJC-rfEwlYjWYxR0dzTk5CE5CQKwZjxkDfLl7L8r6YK5YKGHPgcsxAgYZUHpGRznQuUhB5lmp9TAa8b0ku0-yMjLpuDQACQAtIBwTnZrfz4Z3GD6TlV7PZR98EakJNp_u4b5EuW7NGG5vWY0cbR58xfjftJ5370O_uaEEX1mOIzRZj6y0tgtkcOt_Raw4gk95N3FyQU2c2HY7-ckjepuVy8pjMXh6eJsUs8SxTMclspngluBa1M3VVVbl2yvbiTleytsIazJ1SYLlyXGptpMwMw5o5ZnKjajEkl79cj4irXeu3pj2s_p8RPyoiWmw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SPEEDAM61530.2024.10609054
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore DIgital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350387599
EISSN 2835-8457
EndPage 473
ExternalDocumentID 10609054
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i176t-7c762b3293dfadbbb89f6c845f9b4dc3cae8f660c26f2499a447a1ed1f1a8a6d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:34:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-7c762b3293dfadbbb89f6c845f9b4dc3cae8f660c26f2499a447a1ed1f1a8a6d3
PageCount 6
ParticipantIDs ieee_primary_10609054
PublicationCentury 2000
PublicationDate 2024-June-19
PublicationDateYYYYMMDD 2024-06-19
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-19
  day: 19
PublicationDecade 2020
PublicationTitle International Symposium on Power Electronics, Electrical Drives, Automation and Motion
PublicationTitleAbbrev SPEEDAM
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003009305
Score 1.8782474
Snippet A Network Mining, a pivotal element of business intelligence, has been the subject of extensive study by both academic institutions and industry for an...
SourceID ieee
SourceType Publisher
StartPage 468
SubjectTerms Bibliometrics
Citespace
Dynamics
Industries
Network Mining
Power electronics
Representation learning
Scientometric
Social networking (online)
Title Mapping the Evolution and Future Trajectories of Network Mining: A Scientometric Analysis (2004-2023)
URI https://ieeexplore.ieee.org/document/10609054
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5uJ08qTvwmBw96SE3WNG28De0YQsdAB7uNfIqK7ZDOg7_eJG0nCoK30kMJ-ejzvm-e93kAuNC-w5rEAvFESUQzQxGXOEbaUJlg40A9kGiKKZvM6f0iWbTN6qEXxhgTyGcm8o_hLl9Xau1LZe6EM8xdjNEDvTTlTbPWpqAS--QcJ62wKMH8-mGW53ejwoc02GWCQxp1H_hhpRKQZLwDpt0YGgLJa7SuZaQ-f8kz_nuQu2Dw3bQHZxs42gNbptwHphBegOEJujgP5h_tPoOi1HAc1ESgA6uXULl3KTOsLJw2vHBYBOeIGziC4fjX1Zv33lKwUzGBl4Fd4n3RrwZgPs4fbyeodVZAzyRlNUqV-wfK2EG9tkJLKTNumcpoYrmkWsVKmMwyhtWQWZefcUFpKojRxBKRCabjA9Avq9IcAoixZi5mCzpzVGDBlUvRvASQThLDh-QIDPwcLVeNeMaym57jP96fgG2_VJ6NRfgp6Nfva3PmcL-W52G9vwBdWqpo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA06D3pSceJvc_Cgh9Z0TdLG29COqWsZuMFuI78qKrYinQf_epO0nSgI3koPJSRpvu99ed97AJwp22EdhNxjRAoPxxp7TKDQUxoLgrQJ6o5Ek2Z0OMV3MzJrmtVdL4zW2pHPtG8f3V2-KuXClsrMH04RMznGKlgjBlZEdbvWsqQSWniOSCMtGiB2-TBOkpt-apMaZLBgD_vtJ36YqbhYMtgEWTuKmkLy4i8q4cvPXwKN_x7mFuh-t-3B8TIgbYMVXewAnXIrwfAITaYHk49mp0FeKDhweiLQhKtnV7s3oBmWOcxqZjhMnXfEFexDdwBU5at135Kw1TGB545fYp3RL7pgOkgm10Ov8VbwnoKIVl4kzSkoQhPsVc6VECJmOZUxJjkTWMlQch3nlCLZo7lBaIxjHPFAqyAPeMypCndBpygLvQcgQoqarM0pzWGOOJMGpFkRIEWIZr1gH3TtHM3favmMeTs9B3-8PwXrw0k6mo9us_tDsGGXzXKzAnYEOtX7Qh-bLKASJ27tvwCDV625
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Power+Electronics%2C+Electrical+Drives%2C+Automation+and+Motion&rft.atitle=Mapping+the+Evolution+and+Future+Trajectories+of+Network+Mining%3A+A+Scientometric+Analysis+%282004-2023%29&rft.au=Wang%2C+Xianghan&rft.au=Long%2C+Sheng&rft.au=Zeng%2C+Li&rft.au=Chen%2C+Chao&rft.date=2024-06-19&rft.pub=IEEE&rft.eissn=2835-8457&rft.spage=468&rft.epage=473&rft_id=info:doi/10.1109%2FSPEEDAM61530.2024.10609054&rft.externalDocID=10609054