Neural Network-Based Human Detection Using Raw UWB Radar Data
Ultra-Wideband (UWB) radar technology is a widely used technology for human detection and tracking through walls, because of its effectiveness in low-visibility situations. This study demonstrates a neural network-based identification of human presence using raw data obtained directly from the UWB r...
Saved in:
| Published in | 2024 IEEE Workshop on Microwave Theory and Technology in Wireless Communications (MTTW) pp. 37 - 42 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
02.10.2024
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/MTTW64344.2024.10742175 |
Cover
| Abstract | Ultra-Wideband (UWB) radar technology is a widely used technology for human detection and tracking through walls, because of its effectiveness in low-visibility situations. This study demonstrates a neural network-based identification of human presence using raw data obtained directly from the UWB radar. First, measurements have been collected with different human subjects at different positions relative to the UWB radar. A convolutional neural network (CNN) model has been trained on this dataset, to detect the presence of a human. Next, the algorithm effectiveness is deeply investigated using the Gradient-weighted Class Activation Mapping (Grad-CAM) method, and the observations on detected presence are discussed. |
|---|---|
| AbstractList | Ultra-Wideband (UWB) radar technology is a widely used technology for human detection and tracking through walls, because of its effectiveness in low-visibility situations. This study demonstrates a neural network-based identification of human presence using raw data obtained directly from the UWB radar. First, measurements have been collected with different human subjects at different positions relative to the UWB radar. A convolutional neural network (CNN) model has been trained on this dataset, to detect the presence of a human. Next, the algorithm effectiveness is deeply investigated using the Gradient-weighted Class Activation Mapping (Grad-CAM) method, and the observations on detected presence are discussed. |
| Author | Yousefi, Mohammad Soyak, Ece Gelal Karamzadeh, Saeid Dogan, Emine Berjin |
| Author_xml | – sequence: 1 givenname: Emine Berjin surname: Dogan fullname: Dogan, Emine Berjin email: emine.dogan1@bahcesehir.edu.tr organization: Bahçeşehir University,Electrical and Electronic Engineering Department,Istanbul,Turkey – sequence: 2 givenname: Mohammad surname: Yousefi fullname: Yousefi, Mohammad email: mohammad.yousefi@bahcesehir.edu.tr organization: Bahçeşehir University,Artificial Intelligence Engineering Department,Istanbul,Turkey – sequence: 3 givenname: Ece Gelal surname: Soyak fullname: Soyak, Ece Gelal email: ece.gelalsoyak@bau.edu.tr organization: Bahçeşehir University,Faculty of Engineering and Natural Sciences,Computer Engineering Department,Istanbul,Turkey – sequence: 4 givenname: Saeid surname: Karamzadeh fullname: Karamzadeh, Saeid email: karamzadeh@itu.edu.tr organization: Millimeter Wave Technologies Intelligent Wireless System Silicon Austria Labs (SAL),Linz,Austria |
| BookMark | eNo1j81Kw0AURkfQhda-geC8QOLc-cnMLFzYVq3QH5CELstNckcG20SSlOLbG1AXh7M5fPDdsMumbYixexApgPAP6zzfZVppnUohdQrCagnWXLCpt94pBWbEmmv2uKFThwe-oeHcdp_JDHuq-fJ0xIYvaKBqiG3Diz42H_wdz7zYzUbX2PEFDnjLrgIeepr-ecKKl-d8vkxW29e3-dMqiWCzIck8lKB8KOvSOCkCCpthAB1ksAI0ogmywto49GNA0gUNFWoE50l4Q2rC7n53IxHtv7p4xO57__9K_QDE8EXr |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MTTW64344.2024.10742175 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331533175 |
| EndPage | 42 |
| ExternalDocumentID | 10742175 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i176t-691b139fbdb5820fa076af14f2f7014aa5f2cad58a9b58e28f41ca4a189e095e3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:32:42 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-691b139fbdb5820fa076af14f2f7014aa5f2cad58a9b58e28f41ca4a189e095e3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10742175 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-2 |
| PublicationDateYYYYMMDD | 2024-10-02 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-2 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 IEEE Workshop on Microwave Theory and Technology in Wireless Communications (MTTW) |
| PublicationTitleAbbrev | MTTW |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.903159 |
| Snippet | Ultra-Wideband (UWB) radar technology is a widely used technology for human detection and tracking through walls, because of its effectiveness in... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 37 |
| SubjectTerms | Conferences convolutional neural network Convolutional neural networks deep neural network human detection Microwave communication Neural networks Position measurement Radar tracking Ultra wideband radar UWB radar Wireless communication |
| Title | Neural Network-Based Human Detection Using Raw UWB Radar Data |
| URI | https://ieeexplore.ieee.org/document/10742175 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA22J08qVvwmB6_ZbrLJfhy81FqK0CLS0t7KZJOAKFspuwj-eifZVlEQPCWEgSQM5E0m700IudGxNAJxjImkdEwCTxkkRrMizi0eyYmyuRcKT6bpeC4flmq5FasHLQxaBPKZjXw3vOWbddn4VFnfkwcxhFYd0snytBVrbTlbPC76k9lsgQArfapEyGhn_ePflAAbowMy3U3YskVeoqbWUfnxqxbjv1d0SHrfCj36-IU9R2TPVsfk1lfagFc6bandbIAIZWhI09OhrQPpqqKBJECf4J3OFwNsDWzoEGrokfnofnY3ZtvvEdgzz9KapQXXGL85bbRCHHcQZyk4Lp1wGV58AJQTJRiVQ4EGVuRO8hLQHXlhMbCyyQnpVuvKnhIqTGa4kdxCoaSG0peUSQA02ASEieMz0vN7X721FTBWu22f_zF-Qfa9CwLpTVySbr1p7BWCd62vg9M-ASn_mik |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1aD3pSseK3OXjNdpNN9uPgpdZStV1EtrS3MtkkIMpWyhbBX2-SbRUFwVNCGEjCQN5k8t4EoSsZcsUsjhEWlYZwoDGBSEmSham2R3IkdOqEwqM8Hoz5_VRMV2J1r4WxFp58pgPX9W_5al4uXaqs48iDNoQWm2hLcM5FI9dasbZomHVGRTGxEMtdsoTxYG3_4-cUDxz9XZSvp2z4Ii_BspZB-fGrGuO_17SH2t8aPfz4hT77aENXB-ja1dqAV5w35G7StRilsE_U456uPe2qwp4mgJ_gHY8nXdsqWOAe1NBG4_5tcTMgqw8SyDNN4prEGZU2gjNSSWGR3ECYxGAoN8wk9uoDIAwrQYkUMmugWWo4LcE6JM20Da10dIha1bzSRwgzlSiqONWQCS6hdEVlIgAJOgKmwvAYtd3eZ29NDYzZetsnf4xfou1BMRrOhnf5wynace7wFDh2hlr1YqnPLZTX8sI78BNwNZ12 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Workshop+on+Microwave+Theory+and+Technology+in+Wireless+Communications+%28MTTW%29&rft.atitle=Neural+Network-Based+Human+Detection+Using+Raw+UWB+Radar+Data&rft.au=Dogan%2C+Emine+Berjin&rft.au=Yousefi%2C+Mohammad&rft.au=Soyak%2C+Ece+Gelal&rft.au=Karamzadeh%2C+Saeid&rft.date=2024-10-02&rft.pub=IEEE&rft.spage=37&rft.epage=42&rft_id=info:doi/10.1109%2FMTTW64344.2024.10742175&rft.externalDocID=10742175 |