Neural Network-Based Human Detection Using Raw UWB Radar Data

Ultra-Wideband (UWB) radar technology is a widely used technology for human detection and tracking through walls, because of its effectiveness in low-visibility situations. This study demonstrates a neural network-based identification of human presence using raw data obtained directly from the UWB r...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE Workshop on Microwave Theory and Technology in Wireless Communications (MTTW) pp. 37 - 42
Main Authors Dogan, Emine Berjin, Yousefi, Mohammad, Soyak, Ece Gelal, Karamzadeh, Saeid
Format Conference Proceeding
LanguageEnglish
Published IEEE 02.10.2024
Subjects
Online AccessGet full text
DOI10.1109/MTTW64344.2024.10742175

Cover

Abstract Ultra-Wideband (UWB) radar technology is a widely used technology for human detection and tracking through walls, because of its effectiveness in low-visibility situations. This study demonstrates a neural network-based identification of human presence using raw data obtained directly from the UWB radar. First, measurements have been collected with different human subjects at different positions relative to the UWB radar. A convolutional neural network (CNN) model has been trained on this dataset, to detect the presence of a human. Next, the algorithm effectiveness is deeply investigated using the Gradient-weighted Class Activation Mapping (Grad-CAM) method, and the observations on detected presence are discussed.
AbstractList Ultra-Wideband (UWB) radar technology is a widely used technology for human detection and tracking through walls, because of its effectiveness in low-visibility situations. This study demonstrates a neural network-based identification of human presence using raw data obtained directly from the UWB radar. First, measurements have been collected with different human subjects at different positions relative to the UWB radar. A convolutional neural network (CNN) model has been trained on this dataset, to detect the presence of a human. Next, the algorithm effectiveness is deeply investigated using the Gradient-weighted Class Activation Mapping (Grad-CAM) method, and the observations on detected presence are discussed.
Author Yousefi, Mohammad
Soyak, Ece Gelal
Karamzadeh, Saeid
Dogan, Emine Berjin
Author_xml – sequence: 1
  givenname: Emine Berjin
  surname: Dogan
  fullname: Dogan, Emine Berjin
  email: emine.dogan1@bahcesehir.edu.tr
  organization: Bahçeşehir University,Electrical and Electronic Engineering Department,Istanbul,Turkey
– sequence: 2
  givenname: Mohammad
  surname: Yousefi
  fullname: Yousefi, Mohammad
  email: mohammad.yousefi@bahcesehir.edu.tr
  organization: Bahçeşehir University,Artificial Intelligence Engineering Department,Istanbul,Turkey
– sequence: 3
  givenname: Ece Gelal
  surname: Soyak
  fullname: Soyak, Ece Gelal
  email: ece.gelalsoyak@bau.edu.tr
  organization: Bahçeşehir University,Faculty of Engineering and Natural Sciences,Computer Engineering Department,Istanbul,Turkey
– sequence: 4
  givenname: Saeid
  surname: Karamzadeh
  fullname: Karamzadeh, Saeid
  email: karamzadeh@itu.edu.tr
  organization: Millimeter Wave Technologies Intelligent Wireless System Silicon Austria Labs (SAL),Linz,Austria
BookMark eNo1j81Kw0AURkfQhda-geC8QOLc-cnMLFzYVq3QH5CELstNckcG20SSlOLbG1AXh7M5fPDdsMumbYixexApgPAP6zzfZVppnUohdQrCagnWXLCpt94pBWbEmmv2uKFThwe-oeHcdp_JDHuq-fJ0xIYvaKBqiG3Diz42H_wdz7zYzUbX2PEFDnjLrgIeepr-ecKKl-d8vkxW29e3-dMqiWCzIck8lKB8KOvSOCkCCpthAB1ksAI0ogmywto49GNA0gUNFWoE50l4Q2rC7n53IxHtv7p4xO57__9K_QDE8EXr
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MTTW64344.2024.10742175
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331533175
EndPage 42
ExternalDocumentID 10742175
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-691b139fbdb5820fa076af14f2f7014aa5f2cad58a9b58e28f41ca4a189e095e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:32:42 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-691b139fbdb5820fa076af14f2f7014aa5f2cad58a9b58e28f41ca4a189e095e3
PageCount 6
ParticipantIDs ieee_primary_10742175
PublicationCentury 2000
PublicationDate 2024-Oct.-2
PublicationDateYYYYMMDD 2024-10-02
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-2
  day: 02
PublicationDecade 2020
PublicationTitle 2024 IEEE Workshop on Microwave Theory and Technology in Wireless Communications (MTTW)
PublicationTitleAbbrev MTTW
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.903159
Snippet Ultra-Wideband (UWB) radar technology is a widely used technology for human detection and tracking through walls, because of its effectiveness in...
SourceID ieee
SourceType Publisher
StartPage 37
SubjectTerms Conferences
convolutional neural network
Convolutional neural networks
deep neural network
human detection
Microwave communication
Neural networks
Position measurement
Radar tracking
Ultra wideband radar
UWB radar
Wireless communication
Title Neural Network-Based Human Detection Using Raw UWB Radar Data
URI https://ieeexplore.ieee.org/document/10742175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA22J08qVvwmB6_ZbrLJfhy81FqK0CLS0t7KZJOAKFspuwj-eifZVlEQPCWEgSQM5E0m700IudGxNAJxjImkdEwCTxkkRrMizi0eyYmyuRcKT6bpeC4flmq5FasHLQxaBPKZjXw3vOWbddn4VFnfkwcxhFYd0snytBVrbTlbPC76k9lsgQArfapEyGhn_ePflAAbowMy3U3YskVeoqbWUfnxqxbjv1d0SHrfCj36-IU9R2TPVsfk1lfagFc6bandbIAIZWhI09OhrQPpqqKBJECf4J3OFwNsDWzoEGrokfnofnY3ZtvvEdgzz9KapQXXGL85bbRCHHcQZyk4Lp1wGV58AJQTJRiVQ4EGVuRO8hLQHXlhMbCyyQnpVuvKnhIqTGa4kdxCoaSG0peUSQA02ASEieMz0vN7X721FTBWu22f_zF-Qfa9CwLpTVySbr1p7BWCd62vg9M-ASn_mik
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1aD3pSseK3OXjNdpNN9uPgpdZStV1EtrS3MtkkIMpWyhbBX2-SbRUFwVNCGEjCQN5k8t4EoSsZcsUsjhEWlYZwoDGBSEmSham2R3IkdOqEwqM8Hoz5_VRMV2J1r4WxFp58pgPX9W_5al4uXaqs48iDNoQWm2hLcM5FI9dasbZomHVGRTGxEMtdsoTxYG3_4-cUDxz9XZSvp2z4Ii_BspZB-fGrGuO_17SH2t8aPfz4hT77aENXB-ja1dqAV5w35G7StRilsE_U456uPe2qwp4mgJ_gHY8nXdsqWOAe1NBG4_5tcTMgqw8SyDNN4prEGZU2gjNSSWGR3ECYxGAoN8wk9uoDIAwrQYkUMmugWWo4LcE6JM20Da10dIha1bzSRwgzlSiqONWQCS6hdEVlIgAJOgKmwvAYtd3eZ29NDYzZetsnf4xfou1BMRrOhnf5wynace7wFDh2hlr1YqnPLZTX8sI78BNwNZ12
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Workshop+on+Microwave+Theory+and+Technology+in+Wireless+Communications+%28MTTW%29&rft.atitle=Neural+Network-Based+Human+Detection+Using+Raw+UWB+Radar+Data&rft.au=Dogan%2C+Emine+Berjin&rft.au=Yousefi%2C+Mohammad&rft.au=Soyak%2C+Ece+Gelal&rft.au=Karamzadeh%2C+Saeid&rft.date=2024-10-02&rft.pub=IEEE&rft.spage=37&rft.epage=42&rft_id=info:doi/10.1109%2FMTTW64344.2024.10742175&rft.externalDocID=10742175