Revisiting Agnostic PAC Learning
PAC learning, dating back to Valiant'84 and Vapnik and Chervonenkis'64,'74, is a classic model for studying supervised learning. In the agnostic setting, we have access to a hypothesis set \mathbf{H} and a training set of labeled samples drawn i,i \mathbf{d} . from an unknown data dis...
Saved in:
| Published in | Proceedings / annual Symposium on Foundations of Computer Science pp. 1968 - 1982 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
27.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2575-8454 |
| DOI | 10.1109/FOCS61266.2024.00118 |
Cover
| Abstract | PAC learning, dating back to Valiant'84 and Vapnik and Chervonenkis'64,'74, is a classic model for studying supervised learning. In the agnostic setting, we have access to a hypothesis set \mathbf{H} and a training set of labeled samples drawn i,i \mathbf{d} . from an unknown data distribution D. The goal is to produce a classifier that is competitive with the hypothesis in \mathbf{H} having the least probability of mispredicting the label of a new sample from D. Empirical Risk Minimization (ERM) is a natural learning algorithm, where one simply outputs the hypothesis from \mathbf{H} making the fewest mistakes on the training data. This simple algorithm is known to have an optimal error in terms of the VC-dimension of \mathbf{H} and the number of samples. In this work, we revisit agnostic PAC learning and first show that ERM and any other proper learning algorithm is in fact sub-optimal if we treat the performance of the best hypothesis in \mathbf{H} , as a parameter. We then complement this lower bound with the first learning algorithm achieving an optimal error. Our algorithm introduces several new ideas that we hope may find further applications in learning theory. |
|---|---|
| AbstractList | PAC learning, dating back to Valiant'84 and Vapnik and Chervonenkis'64,'74, is a classic model for studying supervised learning. In the agnostic setting, we have access to a hypothesis set \mathbf{H} and a training set of labeled samples drawn i,i \mathbf{d} . from an unknown data distribution D. The goal is to produce a classifier that is competitive with the hypothesis in \mathbf{H} having the least probability of mispredicting the label of a new sample from D. Empirical Risk Minimization (ERM) is a natural learning algorithm, where one simply outputs the hypothesis from \mathbf{H} making the fewest mistakes on the training data. This simple algorithm is known to have an optimal error in terms of the VC-dimension of \mathbf{H} and the number of samples. In this work, we revisit agnostic PAC learning and first show that ERM and any other proper learning algorithm is in fact sub-optimal if we treat the performance of the best hypothesis in \mathbf{H} , as a parameter. We then complement this lower bound with the first learning algorithm achieving an optimal error. Our algorithm introduces several new ideas that we hope may find further applications in learning theory. |
| Author | Larsen, Kasper Green Zhivotovskiy, Nikita Hanneke, Steve |
| Author_xml | – sequence: 1 givenname: Steve surname: Hanneke fullname: Hanneke, Steve email: steve.hanneke@gmail.com organization: Purdue University,Computer Science,West Lafayette,USA – sequence: 2 givenname: Kasper Green surname: Larsen fullname: Larsen, Kasper Green email: larsen@cs.au.dk organization: Aarhus University,Computer Science,Aarhus,Denmark – sequence: 3 givenname: Nikita surname: Zhivotovskiy fullname: Zhivotovskiy, Nikita email: zhivotovskiy@berkeley.edu organization: UC Berkeley,Statistics,Berkeley,USA |
| BookMark | eNotzNFKwzAUgOEoCm5zb7CLvkDrOck5SXpZilOhMNn0eiRpOiKaSVsE315Br374Lv6luMrnHIXYIFSIUN9td-1Bo9S6kiCpAkC0F2Jdm9oqhYzaEF6KhWTDpSWmG7GcpjcAAgZaiGIfv9KU5pRPRXPK52lOoXhu2qKLbsy_eiuuB_c-xfV_V-J1e__SPpbd7uGpbboyodFzyUMwPtBAzM57j8qpGMmSBJJaSo-1C8pwoJoDUu-8YzTsrY19bxi9WonN3zfFGI-fY_pw4_cRwbAGVuoHBPo_4g |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/FOCS61266.2024.00118 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISBN | 9798331516741 |
| EISSN | 2575-8454 |
| EndPage | 1982 |
| ExternalDocumentID | 10756053 |
| Genre | orig-research |
| GroupedDBID | --Z 6IE 6IH 6IK ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i176t-5fc7bc4f455abbb13a3ee4842042622b19ac375c495c14daba5175b88edd751b3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 03:04:08 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-5fc7bc4f455abbb13a3ee4842042622b19ac375c495c14daba5175b88edd751b3 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10756053 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-27 |
| PublicationDateYYYYMMDD | 2024-10-27 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / annual Symposium on Foundations of Computer Science |
| PublicationTitleAbbrev | FOCS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0040504 |
| Score | 2.2818043 |
| Snippet | PAC learning, dating back to Valiant'84 and Vapnik and Chervonenkis'64,'74, is a classic model for studying supervised learning. In the agnostic setting, we... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1968 |
| SubjectTerms | agnostic Classification algorithms Computer science learning theory pac learning Picture archiving and communication systems Risk minimization sample complexity Supervised learning Training Training data vc-dimension |
| Title | Revisiting Agnostic PAC Learning |
| URI | https://ieeexplore.ieee.org/document/10756053 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP1wO-llOiv-JgevrU2TNOlxDMcQNoc62G3kV0WETWZ78a83ydqJguAt5JKEkLzvS957H8CNMthK72_HiXIJSkFMLIlJY5OmOvhvSe21w5NpPp7T-wVbNGL1oIWx1gbymU18M_zlm7Wu_VOZO-HcATQjHehwkW_FWu216wKPlDbaOJwWt6OH4ZND79zTEDIaPhzEjwoqAUBGPZi2Q295I29JXalEf_5yZfz33A4h-tbqodkOhY5gz6760GuLNaDm7PbhYLIzaP04BvQYVOWe84wGnmvnutFsMESN3-pLBPPR3fNwHDfFEuJXzPMqZqXmStOSMiaVUphIYi0VNAue85nChdSEM-0SIo2pkUoyFzkoIawxnGFFTqC7Wq_sKSBaGio1NV43S2WBpRWC5KXULlby-d4ZRH79y_etH8ayXfr5H_0XsO_3wN_4Gb-EbrWp7ZWD8kpdhy38AlBqnDo |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0oHtQLihi_3YPXxe12ut09EiJBBSQKCTfSrzXGBIwuF3-9bdnFaGLiremlbZr2zbTvvQG4kpoY4fztOJU2QcmoDgXVUaijSHn_LaGcdngwTHoTvJuyaSlW91oYY4wnn5mWa_q_fL1QS_dUZk84twDN6CZsMURkK7lWdfHa0CPCUh1Houy6-9B5svidOCJCjP7LIf1RQ8VDSLcOw2rwFXPktbUsZEt9_vJl_Pfs9qD5rdYLRmsc2ocNM29AvSrXEJSntwG7g7VF68cBBI9eV-5Yz0Hbse1sdzBqd4LScfW5CZPuzbjTC8tyCeEL4UkRslxxqTBHxoSUklBBjcEUY-86H0uSCUU5UzYlUgS1kILZ2EGmqdGaMyLpIdTmi7k5ggBzjUKhdspZFBkRJk1pkgtloyWX8R1D061_9rZyxJhVSz_5o_8StnvjQX_Wvx3en8KO2w93_8f8DGrF-9KcW2Av5IXfzi-0Ap-H |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Revisiting+Agnostic+PAC+Learning&rft.au=Hanneke%2C+Steve&rft.au=Larsen%2C+Kasper+Green&rft.au=Zhivotovskiy%2C+Nikita&rft.date=2024-10-27&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=1968&rft.epage=1982&rft_id=info:doi/10.1109%2FFOCS61266.2024.00118&rft.externalDocID=10756053 |