Revisiting Agnostic PAC Learning

PAC learning, dating back to Valiant'84 and Vapnik and Chervonenkis'64,'74, is a classic model for studying supervised learning. In the agnostic setting, we have access to a hypothesis set \mathbf{H} and a training set of labeled samples drawn i,i \mathbf{d} . from an unknown data dis...

Full description

Saved in:
Bibliographic Details
Published inProceedings / annual Symposium on Foundations of Computer Science pp. 1968 - 1982
Main Authors Hanneke, Steve, Larsen, Kasper Green, Zhivotovskiy, Nikita
Format Conference Proceeding
LanguageEnglish
Published IEEE 27.10.2024
Subjects
Online AccessGet full text
ISSN2575-8454
DOI10.1109/FOCS61266.2024.00118

Cover

Abstract PAC learning, dating back to Valiant'84 and Vapnik and Chervonenkis'64,'74, is a classic model for studying supervised learning. In the agnostic setting, we have access to a hypothesis set \mathbf{H} and a training set of labeled samples drawn i,i \mathbf{d} . from an unknown data distribution D. The goal is to produce a classifier that is competitive with the hypothesis in \mathbf{H} having the least probability of mispredicting the label of a new sample from D. Empirical Risk Minimization (ERM) is a natural learning algorithm, where one simply outputs the hypothesis from \mathbf{H} making the fewest mistakes on the training data. This simple algorithm is known to have an optimal error in terms of the VC-dimension of \mathbf{H} and the number of samples. In this work, we revisit agnostic PAC learning and first show that ERM and any other proper learning algorithm is in fact sub-optimal if we treat the performance of the best hypothesis in \mathbf{H} , as a parameter. We then complement this lower bound with the first learning algorithm achieving an optimal error. Our algorithm introduces several new ideas that we hope may find further applications in learning theory.
AbstractList PAC learning, dating back to Valiant'84 and Vapnik and Chervonenkis'64,'74, is a classic model for studying supervised learning. In the agnostic setting, we have access to a hypothesis set \mathbf{H} and a training set of labeled samples drawn i,i \mathbf{d} . from an unknown data distribution D. The goal is to produce a classifier that is competitive with the hypothesis in \mathbf{H} having the least probability of mispredicting the label of a new sample from D. Empirical Risk Minimization (ERM) is a natural learning algorithm, where one simply outputs the hypothesis from \mathbf{H} making the fewest mistakes on the training data. This simple algorithm is known to have an optimal error in terms of the VC-dimension of \mathbf{H} and the number of samples. In this work, we revisit agnostic PAC learning and first show that ERM and any other proper learning algorithm is in fact sub-optimal if we treat the performance of the best hypothesis in \mathbf{H} , as a parameter. We then complement this lower bound with the first learning algorithm achieving an optimal error. Our algorithm introduces several new ideas that we hope may find further applications in learning theory.
Author Larsen, Kasper Green
Zhivotovskiy, Nikita
Hanneke, Steve
Author_xml – sequence: 1
  givenname: Steve
  surname: Hanneke
  fullname: Hanneke, Steve
  email: steve.hanneke@gmail.com
  organization: Purdue University,Computer Science,West Lafayette,USA
– sequence: 2
  givenname: Kasper Green
  surname: Larsen
  fullname: Larsen, Kasper Green
  email: larsen@cs.au.dk
  organization: Aarhus University,Computer Science,Aarhus,Denmark
– sequence: 3
  givenname: Nikita
  surname: Zhivotovskiy
  fullname: Zhivotovskiy, Nikita
  email: zhivotovskiy@berkeley.edu
  organization: UC Berkeley,Statistics,Berkeley,USA
BookMark eNotzNFKwzAUgOEoCm5zb7CLvkDrOck5SXpZilOhMNn0eiRpOiKaSVsE315Br374Lv6luMrnHIXYIFSIUN9td-1Bo9S6kiCpAkC0F2Jdm9oqhYzaEF6KhWTDpSWmG7GcpjcAAgZaiGIfv9KU5pRPRXPK52lOoXhu2qKLbsy_eiuuB_c-xfV_V-J1e__SPpbd7uGpbboyodFzyUMwPtBAzM57j8qpGMmSBJJaSo-1C8pwoJoDUu-8YzTsrY19bxi9WonN3zfFGI-fY_pw4_cRwbAGVuoHBPo_4g
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS61266.2024.00118
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9798331516741
EISSN 2575-8454
EndPage 1982
ExternalDocumentID 10756053
Genre orig-research
GroupedDBID --Z
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i176t-5fc7bc4f455abbb13a3ee4842042622b19ac375c495c14daba5175b88edd751b3
IEDL.DBID RIE
IngestDate Wed Aug 27 03:04:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-5fc7bc4f455abbb13a3ee4842042622b19ac375c495c14daba5175b88edd751b3
PageCount 15
ParticipantIDs ieee_primary_10756053
PublicationCentury 2000
PublicationDate 2024-Oct.-27
PublicationDateYYYYMMDD 2024-10-27
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-27
  day: 27
PublicationDecade 2020
PublicationTitle Proceedings / annual Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
Score 2.2818043
Snippet PAC learning, dating back to Valiant'84 and Vapnik and Chervonenkis'64,'74, is a classic model for studying supervised learning. In the agnostic setting, we...
SourceID ieee
SourceType Publisher
StartPage 1968
SubjectTerms agnostic
Classification algorithms
Computer science
learning theory
pac learning
Picture archiving and communication systems
Risk minimization
sample complexity
Supervised learning
Training
Training data
vc-dimension
Title Revisiting Agnostic PAC Learning
URI https://ieeexplore.ieee.org/document/10756053
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP1wO-llOiv-JgevrU2TNOlxDMcQNoc62G3kV0WETWZ78a83ydqJguAt5JKEkLzvS957H8CNMthK72_HiXIJSkFMLIlJY5OmOvhvSe21w5NpPp7T-wVbNGL1oIWx1gbymU18M_zlm7Wu_VOZO-HcATQjHehwkW_FWu216wKPlDbaOJwWt6OH4ZND79zTEDIaPhzEjwoqAUBGPZi2Q295I29JXalEf_5yZfz33A4h-tbqodkOhY5gz6760GuLNaDm7PbhYLIzaP04BvQYVOWe84wGnmvnutFsMESN3-pLBPPR3fNwHDfFEuJXzPMqZqXmStOSMiaVUphIYi0VNAue85nChdSEM-0SIo2pkUoyFzkoIawxnGFFTqC7Wq_sKSBaGio1NV43S2WBpRWC5KXULlby-d4ZRH79y_etH8ayXfr5H_0XsO_3wN_4Gb-EbrWp7ZWD8kpdhy38AlBqnDo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0oHtQLihi_3YPXxe12ut09EiJBBSQKCTfSrzXGBIwuF3-9bdnFaGLiremlbZr2zbTvvQG4kpoY4fztOJU2QcmoDgXVUaijSHn_LaGcdngwTHoTvJuyaSlW91oYY4wnn5mWa_q_fL1QS_dUZk84twDN6CZsMURkK7lWdfHa0CPCUh1Houy6-9B5svidOCJCjP7LIf1RQ8VDSLcOw2rwFXPktbUsZEt9_vJl_Pfs9qD5rdYLRmsc2ocNM29AvSrXEJSntwG7g7VF68cBBI9eV-5Yz0Hbse1sdzBqd4LScfW5CZPuzbjTC8tyCeEL4UkRslxxqTBHxoSUklBBjcEUY-86H0uSCUU5UzYlUgS1kILZ2EGmqdGaMyLpIdTmi7k5ggBzjUKhdspZFBkRJk1pkgtloyWX8R1D061_9rZyxJhVSz_5o_8StnvjQX_Wvx3en8KO2w93_8f8DGrF-9KcW2Av5IXfzi-0Ap-H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Revisiting+Agnostic+PAC+Learning&rft.au=Hanneke%2C+Steve&rft.au=Larsen%2C+Kasper+Green&rft.au=Zhivotovskiy%2C+Nikita&rft.date=2024-10-27&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=1968&rft.epage=1982&rft_id=info:doi/10.1109%2FFOCS61266.2024.00118&rft.externalDocID=10756053