Harnessing Large Language Models: Fine-Tuned BERT for Detecting Charismatic Leadership Tactics in Natural Language

This work investigates the identification of Charis-matic Leadership Tactics (CLTs) in natural language using a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model. Based on an own extensive corpus of CLTs generated and curated for this task, our methodology entails train...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE 3rd Conference on Information Technology and Data Science (CITDS) pp. 1 - 6
Main Authors Saeid, Yasser, Neuburger, Felix, Krugl, Stefanie, Huster, Helena, Kopinski, Thomas, Lanwehr, Ralf
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.08.2024
Subjects
Online AccessGet full text
DOI10.1109/CITDS62610.2024.10791373

Cover

Abstract This work investigates the identification of Charis-matic Leadership Tactics (CLTs) in natural language using a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model. Based on an own extensive corpus of CLTs generated and curated for this task, our methodology entails training a machine learning model that is capable of accurately identifying the presence of these tactics in natural language. A performance evaluation is conducted to assess the effectiveness of our model in detecting CLTs. We find that the total accuracy over the detection of all CLTs is 98.96% The results of this study have significant implications for research in psychology and management, offering potential methods to simplify the currently elaborate assessment of charisma in texts.
AbstractList This work investigates the identification of Charis-matic Leadership Tactics (CLTs) in natural language using a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model. Based on an own extensive corpus of CLTs generated and curated for this task, our methodology entails training a machine learning model that is capable of accurately identifying the presence of these tactics in natural language. A performance evaluation is conducted to assess the effectiveness of our model in detecting CLTs. We find that the total accuracy over the detection of all CLTs is 98.96% The results of this study have significant implications for research in psychology and management, offering potential methods to simplify the currently elaborate assessment of charisma in texts.
Author Kopinski, Thomas
Lanwehr, Ralf
Krugl, Stefanie
Saeid, Yasser
Neuburger, Felix
Huster, Helena
Author_xml – sequence: 1
  givenname: Yasser
  surname: Saeid
  fullname: Saeid, Yasser
  email: saeid.yasser@fh-swf.de
  organization: South Westphalia University of Applied Sciences,Department of Engineering and Economics,Meschede,Germany
– sequence: 2
  givenname: Felix
  orcidid: 0000-0002-8983-6466
  surname: Neuburger
  fullname: Neuburger, Felix
  organization: South Westphalia University of Applied Sciences,Department of Engineering and Economics,Meschede,Germany
– sequence: 3
  givenname: Stefanie
  orcidid: 0000-0002-2670-2655
  surname: Krugl
  fullname: Krugl, Stefanie
  organization: South Westphalia University of Applied Sciences,Department of Engineering and Economics,Meschede,Germany
– sequence: 4
  givenname: Helena
  orcidid: 0009-0008-9900-7814
  surname: Huster
  fullname: Huster, Helena
  organization: South Westphalia University of Applied Sciences,Department of Engineering and Economics,Meschede,Germany
– sequence: 5
  givenname: Thomas
  surname: Kopinski
  fullname: Kopinski, Thomas
  email: kopinski.thomas@fh-swf.de
  organization: South Westphalia University of Applied Sciences,Department of Engineering and Economics,Meschede,Germany
– sequence: 6
  givenname: Ralf
  surname: Lanwehr
  fullname: Lanwehr, Ralf
  email: lanwehr.ralf@fh-swf.de
  organization: South Westphalia University of Applied Sciences,Department of Engineering and Economics,Meschede,Germany
BookMark eNo9UMlOwzAUNBIcWPoHHPwDKV7iJdwgbWmlABKEc_XsvLSWWrey0wN_TxDLZRaNZg5zRc7jISIhlLMp56y6q1ft7F0LPXrBRDnlzFRcGnlGJpWprFRMWmNtdUnSElLEnEPc0AbSBkeMmxOM4vnQ4S7f00WIWLSniB19nL-1tD8kOsMB_fBdqreQQt7DEDxtEDpMeRuOtIUx9pmGSF9gOCXY_Q_fkIsedhknv3xNPhbztl4WzevTqn5oisCNHgrlvep7450vbaeFQ-ccKC1LJQBLx72zzlvlwEjNRec0E5UE0EIhQ4dKXpPbn92AiOtjCntIn-u_K-QXyrxa5Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CITDS62610.2024.10791373
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISBN 9798350387889
EndPage 6
ExternalDocumentID 10791373
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-5cc5ff7cbc48d62bebbba563452ae4b1cb8bc85ba73612db60293aa625e0ebe53
IEDL.DBID RIE
IngestDate Wed Dec 25 05:51:37 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-5cc5ff7cbc48d62bebbba563452ae4b1cb8bc85ba73612db60293aa625e0ebe53
ORCID 0000-0002-2670-2655
0009-0008-9900-7814
0000-0002-8983-6466
PageCount 6
ParticipantIDs ieee_primary_10791373
PublicationCentury 2000
PublicationDate 2024-Aug.-26
PublicationDateYYYYMMDD 2024-08-26
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.-26
  day: 26
PublicationDecade 2020
PublicationTitle 2024 IEEE 3rd Conference on Information Technology and Data Science (CITDS)
PublicationTitleAbbrev CITDS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8931208
Snippet This work investigates the identification of Charis-matic Leadership Tactics (CLTs) in natural language using a fine-tuned Bidirectional Encoder...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bidirectional control
charismatic leadership
computational linguistics
Data models
Encoding
Generative AI
Large Language Models
Leadership
Machine learning
natural language processing
Natural languages
Performance evaluation
political speeches
Psychology
Training
Transformers
Title Harnessing Large Language Models: Fine-Tuned BERT for Detecting Charismatic Leadership Tactics in Natural Language
URI https://ieeexplore.ieee.org/document/10791373
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60p558VXyzB6-Jee1u4tE-qFKLaAq9lX1MoCiptMlBf72zSRNRELyEkDc7ZL55fDNDyHWmfYMwyNEt8QMn8iF0FI-0A1mQJVFsmNA23vE45eNZ9DBn822xelULAwAV-Qxcu1vl8s1KlzZUhn-4SPxQhLtkV4ikLtZq2DlectO_TwcvaKBbejNCj9tc_mNwSoUboz0ybd5Y00Ve3bJQrv781Yzx35-0T3rfJXr0qQWfA7ID-SHpturs44isx3Jt9RiephPL98ZtHZukdgDa2-aWjtDEdNISNS29Gz6nFA1YOgCbVrA32Uz8clO1dKWTlvFM06qsakOXOZ3KqmtH--AemY2GaX_sbCcsOEtf8MJhWrMsE1ppFAsPFCilJONhxAIJkfK1ipWOmZIiREvIKO6hdSAl-kzgofRZeEw6-SqHExSCRM_EgJQ-JBE3Saw5JIYxVKgGlbF3Snp29RbvdRONRbNwZ38cPyddK0Qbvg34BekU6xIuEf8LdVXJ_QtZfLJ5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEG50PbgnX2t824NXkFcLeHQfYZUlRtlkb5u2lGSjYc0uHPTXOy0LRhMTL4RACk0HZr6Z-WaK0E0u7AzMIAW3xHYMz5auwaknDJk7eegFGfGFindMEhpNvYcZmW2K1XUtjJRSk8-kqU51Lj9bikqFyuAP90Pb9d1ttEPArfDrcq2Gn2OFt_1xOngBiK4IzmB8zGbAj61TtOUY7aGkeWdNGHk1q5Kb4vNXO8Z_T2of9b6L9PBTa34O0JYsDlG3VWgfR2gVsZXSZHAbx4rxDcc6OonVFmhv6zs8ApBppBXoWnw_fE4xQFg8kCqxoAapXPxirZu64rjlPONUF1at8aLACdN9O9oH99B0NEz7kbHZY8FY2D4tDSIEyXNfcAGCoQ6XnHNGqOsRh0mP24IHXASEM98FLJRxagE-YAy8JmmB_Il7jDrFspAnIAQGvkkmGbNl6NEsDASVYUYIqNQM1LF1inpq9ebvdRuNebNwZ39cv0a7UTqJ5_E4eTxHXSVQFcx16AXqlKtKXgIaKPmV_ga-AOQRtco
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+3rd+Conference+on+Information+Technology+and+Data+Science+%28CITDS%29&rft.atitle=Harnessing+Large+Language+Models%3A+Fine-Tuned+BERT+for+Detecting+Charismatic+Leadership+Tactics+in+Natural+Language&rft.au=Saeid%2C+Yasser&rft.au=Neuburger%2C+Felix&rft.au=Krugl%2C+Stefanie&rft.au=Huster%2C+Helena&rft.date=2024-08-26&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FCITDS62610.2024.10791373&rft.externalDocID=10791373