Predictive Analytics for Maximizing the Photovoltaic System Performance

To ensure the smooth Terawatt (TW) photovoltaic (PV) transition and secure the TWh power generation over the service lifetime, enhanced digitalization, and automation approaches for effective operation and maintenance (O&M) of PV systems are required. This highlights the urgent need for correcti...

Full description

Saved in:
Bibliographic Details
Published inConference record of the IEEE Photovoltaic Specialists Conference pp. 0210 - 0213
Main Authors Livera, Andreas, Marangis, Demetris, Tziolis, Georgios, Paraskeva, Vasiliki, Makrides, George, Georghiou, George E.
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.06.2024
Subjects
Online AccessGet full text
ISSN2995-1755
DOI10.1109/PVSC57443.2024.10749069

Cover

Abstract To ensure the smooth Terawatt (TW) photovoltaic (PV) transition and secure the TWh power generation over the service lifetime, enhanced digitalization, and automation approaches for effective operation and maintenance (O&M) of PV systems are required. This highlights the urgent need for corrective and predictive analytics to detect and predict possible anomalies in PV systems and to effectively manage and optimally schedule the field O&M activities. To fulfill this need, a failure detection algorithm along with a predictive maintenance model, that leverages statistical and machine learning (ML) principles, are proposed to accurately detect failures and to predict potential fault issues before they occur. The developed algorithm and the model were benchmarked using historical field data from a PV power plant in Greece. The obtained results showed the effectiveness of the algorithm for accurate failure detection and the capability of the predictive model for generating predictive maintenance alarms. The integration of corrective and predictive analytics into a monitoring software solution can help PV plant operators to schedule the field O&M activities, by providing valuable fault insights and actionable maintenance recommendations.
AbstractList To ensure the smooth Terawatt (TW) photovoltaic (PV) transition and secure the TWh power generation over the service lifetime, enhanced digitalization, and automation approaches for effective operation and maintenance (O&M) of PV systems are required. This highlights the urgent need for corrective and predictive analytics to detect and predict possible anomalies in PV systems and to effectively manage and optimally schedule the field O&M activities. To fulfill this need, a failure detection algorithm along with a predictive maintenance model, that leverages statistical and machine learning (ML) principles, are proposed to accurately detect failures and to predict potential fault issues before they occur. The developed algorithm and the model were benchmarked using historical field data from a PV power plant in Greece. The obtained results showed the effectiveness of the algorithm for accurate failure detection and the capability of the predictive model for generating predictive maintenance alarms. The integration of corrective and predictive analytics into a monitoring software solution can help PV plant operators to schedule the field O&M activities, by providing valuable fault insights and actionable maintenance recommendations.
Author Makrides, George
Georghiou, George E.
Tziolis, Georgios
Paraskeva, Vasiliki
Livera, Andreas
Marangis, Demetris
Author_xml – sequence: 1
  givenname: Andreas
  surname: Livera
  fullname: Livera, Andreas
  organization: University of Cyprus,PV Technology Laboratory,Department of Electrical and Computer Engineering,Nicosia,Cyprus,2109
– sequence: 2
  givenname: Demetris
  surname: Marangis
  fullname: Marangis, Demetris
  organization: University of Cyprus,PV Technology Laboratory,Department of Electrical and Computer Engineering,Nicosia,Cyprus,2109
– sequence: 3
  givenname: Georgios
  surname: Tziolis
  fullname: Tziolis, Georgios
  organization: University of Cyprus,PV Technology Laboratory,Department of Electrical and Computer Engineering,Nicosia,Cyprus,2109
– sequence: 4
  givenname: Vasiliki
  surname: Paraskeva
  fullname: Paraskeva, Vasiliki
  organization: University of Cyprus,PV Technology Laboratory,Department of Electrical and Computer Engineering,Nicosia,Cyprus,2109
– sequence: 5
  givenname: George
  surname: Makrides
  fullname: Makrides, George
  organization: University of Cyprus,PV Technology Laboratory,Department of Electrical and Computer Engineering,Nicosia,Cyprus,2109
– sequence: 6
  givenname: George E.
  surname: Georghiou
  fullname: Georghiou, George E.
  organization: University of Cyprus,PV Technology Laboratory,Department of Electrical and Computer Engineering,Nicosia,Cyprus,2109
BookMark eNo1j9tKw0AURUdRsKn-geD8QOKcuWYeS9EqVAxUfS2TyYkdyUWSoRi_3oD6tDeszYKdkLOu75CQG2AZALO3xdturYyUIuOMywyYkZZpe0IS0FpJLbk2p2TBrVUpGKUuSDKOH4xxJjQsyKYYsAo-hiPSVeeaKQY_0rof6JP7Cm34Dt07jQekxaGP_bFvogue7qYxYksLHOZl6zqPl-S8ds2IV3-5JK_3dy_rh3T7vHlcr7ZpAKNjyr0QZcmMRYUKHDe6krXPtfdcVmLu0pf1DCsPOZjaYAklWiu153kNpRJLcv3rDYi4_xxC64Zp__9a_ADaa1Af
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/PVSC57443.2024.10749069
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore digital library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665464267
9781665464260
EISSN 2995-1755
EndPage 0213
ExternalDocumentID 10749069
Genre orig-research
GroupedDBID -~X
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABDPE
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i176t-2c33bb079e5e51a276d4fc86cc24d3d4f4cbf9e5dc1817f7eb1be9946c28f1b53
IEDL.DBID RIE
IngestDate Wed Aug 27 01:59:59 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-2c33bb079e5e51a276d4fc86cc24d3d4f4cbf9e5dc1817f7eb1be9946c28f1b53
PageCount 4
ParticipantIDs ieee_primary_10749069
PublicationCentury 2000
PublicationDate 2024-June-9
PublicationDateYYYYMMDD 2024-06-09
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-9
  day: 09
PublicationDecade 2020
PublicationTitle Conference record of the IEEE Photovoltaic Specialists Conference
PublicationTitleAbbrev PVSC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020361
Score 2.267974
Snippet To ensure the smooth Terawatt (TW) photovoltaic (PV) transition and secure the TWh power generation over the service lifetime, enhanced digitalization, and...
SourceID ieee
SourceType Publisher
StartPage 0210
SubjectTerms Machine learning algorithms
Maintenance
Photovoltaic systems
Prediction algorithms
Predictive analytics
Predictive maintenance
Predictive models
Schedules
Software
Software algorithms
Title Predictive Analytics for Maximizing the Photovoltaic System Performance
URI https://ieeexplore.ieee.org/document/10749069
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD64PemLt4l38uBruzVNk-Z5OIewUdDJ3kZzKRZxldGB7Nd7ku6iguBbaHtoSeB85zTf9wXgjgvtkF0531YdIOKngcJGIsijPCk4Ypb0qvfRmA8n7HGaTNdida-FsdZ68pkN3dDv5ZtKL92vsq4jD8oely1oiZQ3Yq1td4WpOFoTuKKe7GYvT_1EMBZjD0hZuAn9cYiKx5DBIYw3b2-oI2_hslahXv0yZvz35x1BZyfXI9kWiI5hz85P4OCb0-ApPGQLtyPjchvxPiTOnZlgwUpG-Wf5Xq7wKYK1IMleq7rClFXnpSaNnTnJduKCDkwG98_9YbA-QyEoI8HrgOo4VqonpE1sEuVUcMMKnTq2NDMxjplWBd40GqFeFAJTt7JSMq5pWkQqic-gPa_m9hxIiqsnqOLKSO7jDNVYHmCkoFwV5gI6bk5mH41NxmwzHZd_XL-Cfbc0nnclr6FdL5b2BhG-Vrd-Zb8Ajrmmrw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB20HtSLXxW_3YPXtE2yH9lzsVZtS8BWeivZzQaD2EhJQfrrnd20VgXB25JkSNiFeTPZ994C3HChLbIr69uqPUT8yFPYSHiJn7CMI2ZJp3rvD3h3RB_GbLwUqzstjDHGkc9Mww7dXn5a6Ln9Vda05EHZ4nITthillFVyra_-CpOxv6Rw-S3ZjJ-f2kxQGmIXGNDGKvjHMSoORTp7MFi9vyKPvDbmpWroxS9rxn9_4D7U14I9En9B0QFsmOkh7H7zGjyCu3hm92RsdiPOicT6MxMsWUk_-cjf8gU-RbAaJPFLURaYtMok16QyNCfxWl5Qh1HndtjuestTFLzcF7z0Ah2GSrWENMwwPwkET2mmI8uXpmmIY6pVhjdTjWAvMoHJWxkpKddBlPmKhcdQmxZTcwIkwvUTgeIqldzFpYHGAgEjRcBVlp5C3c7J5L0yypispuPsj-vXsN0d9nuT3v3g8Rx27DI5Fpa8gFo5m5tLxPtSXblV_gR2kan8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Conference+record+of+the+IEEE+Photovoltaic+Specialists+Conference&rft.atitle=Predictive+Analytics+for+Maximizing+the+Photovoltaic+System+Performance&rft.au=Livera%2C+Andreas&rft.au=Marangis%2C+Demetris&rft.au=Tziolis%2C+Georgios&rft.au=Paraskeva%2C+Vasiliki&rft.date=2024-06-09&rft.pub=IEEE&rft.eissn=2995-1755&rft.spage=0210&rft.epage=0213&rft_id=info:doi/10.1109%2FPVSC57443.2024.10749069&rft.externalDocID=10749069