ACI-IoT-2023: A Robust Dataset for Internet of Things Network Security Analysis
The dynamic and evolving landscape of cybersecurity demands robust datasets for developing and evaluating Internet of Things (IoT) network security analytical solutions. This paper introduces the ACI-IoT-2023 dataset, designed to address the existing gaps and challenges in current IoT network securi...
Saved in:
Published in | MILCOM IEEE Military Communications Conference pp. 1 - 6 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
28.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2155-7586 |
DOI | 10.1109/MILCOM61039.2024.10773916 |
Cover
Abstract | The dynamic and evolving landscape of cybersecurity demands robust datasets for developing and evaluating Internet of Things (IoT) network security analytical solutions. This paper introduces the ACI-IoT-2023 dataset, designed to address the existing gaps and challenges in current IoT network security datasets. Informed by a comprehensive review of established datasets, ACI-IoT-2023 offers a rich, diverse, and realistic collection of network traffic data from a meticulously emulated home IoT environment. The methodology involves deploying a variety of physical IoT devices, capturing both wired and wireless network traffic, and simulating real-world scenarios through benign and malicious activities. Data collection was conducted over five days, covering reconnaissance, denial of service, brute force, spoofing attacks, and normal network traffic. Advanced tools and scripts were employed for data capture, feature extraction, cleaning, and labeling to ensure the dataset's accuracy and comprehensiveness. Additionally, we generated a complementary dataset with labeled packet capture files, enhancing the dataset's utility for artificial intelligence based IoT network security research. The ACI-IoT-2023 dataset stands as a significant contribution to the field, providing researchers and practitioners with a robust foundation for developing and testing next-generation IoT network security analytical solutions. |
---|---|
AbstractList | The dynamic and evolving landscape of cybersecurity demands robust datasets for developing and evaluating Internet of Things (IoT) network security analytical solutions. This paper introduces the ACI-IoT-2023 dataset, designed to address the existing gaps and challenges in current IoT network security datasets. Informed by a comprehensive review of established datasets, ACI-IoT-2023 offers a rich, diverse, and realistic collection of network traffic data from a meticulously emulated home IoT environment. The methodology involves deploying a variety of physical IoT devices, capturing both wired and wireless network traffic, and simulating real-world scenarios through benign and malicious activities. Data collection was conducted over five days, covering reconnaissance, denial of service, brute force, spoofing attacks, and normal network traffic. Advanced tools and scripts were employed for data capture, feature extraction, cleaning, and labeling to ensure the dataset's accuracy and comprehensiveness. Additionally, we generated a complementary dataset with labeled packet capture files, enhancing the dataset's utility for artificial intelligence based IoT network security research. The ACI-IoT-2023 dataset stands as a significant contribution to the field, providing researchers and practitioners with a robust foundation for developing and testing next-generation IoT network security analytical solutions. |
Author | Nack, Emily A. McKenzie, Morgan C. Bastian, Nathaniel D. |
Author_xml | – sequence: 1 givenname: Emily A. surname: Nack fullname: Nack, Emily A. email: emily.nack@westpoint.edu organization: Army Cyber Institute,United States Military Academy,West Point,NY,USA – sequence: 2 givenname: Morgan C. surname: McKenzie fullname: McKenzie, Morgan C. email: morgan.mckenzie@westpoint.edu organization: Army Cyber Institute,United States Military Academy,West Point,NY,USA – sequence: 3 givenname: Nathaniel D. surname: Bastian fullname: Bastian, Nathaniel D. email: nathaniel.bastian@westpoint.edu organization: Army Cyber Institute,United States Military Academy,West Point,NY,USA |
BookMark | eNo1kEtOwzAUAA0CiVJ6AxbmACnv2Yk_7KJQIFJKJSjrykmeIVASFLtCvT2VgNVoNrOYc3bSDz0xdoUwRwR7vSyrYrVUCNLOBYh0jqC1tKiO2Mxqa2QGUqdCwjGbCMyyRGdGnbFZCO8AgMIoYXHCVnlRJuWwTg4NecNz_jTUuxD5rYsuUOR-GHnZRxr7gwyer9-6_jXwR4rfw_jBn6nZjV3c87x3233owgU79W4baPbHKXu5W6yLh6Ra3ZdFXiUdahUT9FLU3tapccq0aJRNG4CsNSgUeVcTaNe03urWkDBCgyXwjTXep-RMq-SUXf52OyLafI3dpxv3m_8H8geOfFHr |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/MILCOM61039.2024.10773916 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350374230 |
EISSN | 2155-7586 |
EndPage | 6 |
ExternalDocumentID | 10773916 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.S. Army Combat Capabilities Development Command funderid: 10.13039/100014819 |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i176t-1f32bf9b48a68d18694c005d8126efabe07acdf97d8e282709e0fc98ff4ea8d63 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 15 06:20:47 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-1f32bf9b48a68d18694c005d8126efabe07acdf97d8e282709e0fc98ff4ea8d63 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10773916 |
PublicationCentury | 2000 |
PublicationDate | 2024-Oct.-28 |
PublicationDateYYYYMMDD | 2024-10-28 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | MILCOM IEEE Military Communications Conference |
PublicationTitleAbbrev | MILCOM |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001286291 |
Score | 2.2899883 |
Snippet | The dynamic and evolving landscape of cybersecurity demands robust datasets for developing and evaluating Internet of Things (IoT) network security analytical... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Computer security Data collection Dataset Internet of Things Network security Reviews Telecommunication traffic Testing Topology Usability Wireless networks |
Title | ACI-IoT-2023: A Robust Dataset for Internet of Things Network Security Analysis |
URI | https://ieeexplore.ieee.org/document/10773916 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1uD6Iv3ibeieBr6tamSerbmI5N3Ca6wd5GLl9gCKto--KvN-lFpyDYp7ZQCEm-nuTLd85B6EpSJiIqGGGgOaGgXEhFmpIYhIpZot1Ps6jyHbPBjN7P43lFVi-4MABQFJ9B4G-Ls3yT6tynylyEc-6Jog3UcPOsJGutJVTc4jzpbKLLSkfzejR86E1GzB92uo1gSIP6-x9OKgWQ9HfQuG5CWT_yEuSZCvTHL3XGf7dxF7W-OXv48QuN9tAGrPbR9prc4AGadHtDMkynxJuZ3-AufkpV_p7hW5k5LMuwW7_iMkPoHlKLS09PPC4rxfFzZXWHayGTFpr176a9AakMFciyw1lGOjYKlU0UFZIJ482oqHZRaBzIM7BSQZtLbWzCjQC3FePtBNpWJ8JaClIYFh2i5ipdwRHCQit3MSmkiSiPQw90RssYophSqdQxavm-WbyWmhmLultO_nh_irb8EHlUCMUZamZvOZw7uM_URTHMnw_WqDQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46wcuLt4l3I_iaubVpmvo2pmPVrRPdwLeRywmIsIq2L_56k150CoJ9SvsQQg6nX87J-c6H0IWgjPuUM8JAhYSCtC7lK0oC4DJgkbI_zaLKN2GDKb19Cp4qsnrBhQGAovgMWm5Y3OXrVOUuVWY9PAwdUXQZrQQ2rOAlXWshpWKP51FnFZ1XnTQvR_GwNx4xd91pQ0GPtuoZfmipFFDS30RJvYiyguSllWeypT5-9Wf89yq3UPObtYfvv_BoGy3BfAdtLDQc3EXjbi8mcTohTs78CnfxQyrz9wxfi8yiWYbtCRaXOUL7khpcqnripKwVx4-V2B2uW5k00bR_M-kNSCWpQJ47IctIx_ieNJGkXDCunRwVVdYPtYV5BkZIaIdCaROFmoMNxsJ2BG2jIm4MBcE18_dQY57OYR9hrqR9mOBC-zQMPAd1WokAfGsbIeUBarq9mb2WXTNm9bYc_vH9DK0NJqPhbBgnd0do3ZnLYYTHj1Eje8vhxIJ_Jk8Lk38CG-Wrhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=MILCOM+IEEE+Military+Communications+Conference&rft.atitle=ACI-IoT-2023%3A+A+Robust+Dataset+for+Internet+of+Things+Network+Security+Analysis&rft.au=Nack%2C+Emily+A.&rft.au=McKenzie%2C+Morgan+C.&rft.au=Bastian%2C+Nathaniel+D.&rft.date=2024-10-28&rft.pub=IEEE&rft.eissn=2155-7586&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMILCOM61039.2024.10773916&rft.externalDocID=10773916 |