ACI-IoT-2023: A Robust Dataset for Internet of Things Network Security Analysis

The dynamic and evolving landscape of cybersecurity demands robust datasets for developing and evaluating Internet of Things (IoT) network security analytical solutions. This paper introduces the ACI-IoT-2023 dataset, designed to address the existing gaps and challenges in current IoT network securi...

Full description

Saved in:
Bibliographic Details
Published inMILCOM IEEE Military Communications Conference pp. 1 - 6
Main Authors Nack, Emily A., McKenzie, Morgan C., Bastian, Nathaniel D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.10.2024
Subjects
Online AccessGet full text
ISSN2155-7586
DOI10.1109/MILCOM61039.2024.10773916

Cover

Abstract The dynamic and evolving landscape of cybersecurity demands robust datasets for developing and evaluating Internet of Things (IoT) network security analytical solutions. This paper introduces the ACI-IoT-2023 dataset, designed to address the existing gaps and challenges in current IoT network security datasets. Informed by a comprehensive review of established datasets, ACI-IoT-2023 offers a rich, diverse, and realistic collection of network traffic data from a meticulously emulated home IoT environment. The methodology involves deploying a variety of physical IoT devices, capturing both wired and wireless network traffic, and simulating real-world scenarios through benign and malicious activities. Data collection was conducted over five days, covering reconnaissance, denial of service, brute force, spoofing attacks, and normal network traffic. Advanced tools and scripts were employed for data capture, feature extraction, cleaning, and labeling to ensure the dataset's accuracy and comprehensiveness. Additionally, we generated a complementary dataset with labeled packet capture files, enhancing the dataset's utility for artificial intelligence based IoT network security research. The ACI-IoT-2023 dataset stands as a significant contribution to the field, providing researchers and practitioners with a robust foundation for developing and testing next-generation IoT network security analytical solutions.
AbstractList The dynamic and evolving landscape of cybersecurity demands robust datasets for developing and evaluating Internet of Things (IoT) network security analytical solutions. This paper introduces the ACI-IoT-2023 dataset, designed to address the existing gaps and challenges in current IoT network security datasets. Informed by a comprehensive review of established datasets, ACI-IoT-2023 offers a rich, diverse, and realistic collection of network traffic data from a meticulously emulated home IoT environment. The methodology involves deploying a variety of physical IoT devices, capturing both wired and wireless network traffic, and simulating real-world scenarios through benign and malicious activities. Data collection was conducted over five days, covering reconnaissance, denial of service, brute force, spoofing attacks, and normal network traffic. Advanced tools and scripts were employed for data capture, feature extraction, cleaning, and labeling to ensure the dataset's accuracy and comprehensiveness. Additionally, we generated a complementary dataset with labeled packet capture files, enhancing the dataset's utility for artificial intelligence based IoT network security research. The ACI-IoT-2023 dataset stands as a significant contribution to the field, providing researchers and practitioners with a robust foundation for developing and testing next-generation IoT network security analytical solutions.
Author Nack, Emily A.
McKenzie, Morgan C.
Bastian, Nathaniel D.
Author_xml – sequence: 1
  givenname: Emily A.
  surname: Nack
  fullname: Nack, Emily A.
  email: emily.nack@westpoint.edu
  organization: Army Cyber Institute,United States Military Academy,West Point,NY,USA
– sequence: 2
  givenname: Morgan C.
  surname: McKenzie
  fullname: McKenzie, Morgan C.
  email: morgan.mckenzie@westpoint.edu
  organization: Army Cyber Institute,United States Military Academy,West Point,NY,USA
– sequence: 3
  givenname: Nathaniel D.
  surname: Bastian
  fullname: Bastian, Nathaniel D.
  email: nathaniel.bastian@westpoint.edu
  organization: Army Cyber Institute,United States Military Academy,West Point,NY,USA
BookMark eNo1kEtOwzAUAA0CiVJ6AxbmACnv2Yk_7KJQIFJKJSjrykmeIVASFLtCvT2VgNVoNrOYc3bSDz0xdoUwRwR7vSyrYrVUCNLOBYh0jqC1tKiO2Mxqa2QGUqdCwjGbCMyyRGdGnbFZCO8AgMIoYXHCVnlRJuWwTg4NecNz_jTUuxD5rYsuUOR-GHnZRxr7gwyer9-6_jXwR4rfw_jBn6nZjV3c87x3233owgU79W4baPbHKXu5W6yLh6Ra3ZdFXiUdahUT9FLU3tapccq0aJRNG4CsNSgUeVcTaNe03urWkDBCgyXwjTXep-RMq-SUXf52OyLafI3dpxv3m_8H8geOfFHr
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/MILCOM61039.2024.10773916
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350374230
EISSN 2155-7586
EndPage 6
ExternalDocumentID 10773916
Genre orig-research
GrantInformation_xml – fundername: U.S. Army Combat Capabilities Development Command
  funderid: 10.13039/100014819
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i176t-1f32bf9b48a68d18694c005d8126efabe07acdf97d8e282709e0fc98ff4ea8d63
IEDL.DBID RIE
IngestDate Wed Jan 15 06:20:47 EST 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-1f32bf9b48a68d18694c005d8126efabe07acdf97d8e282709e0fc98ff4ea8d63
PageCount 6
ParticipantIDs ieee_primary_10773916
PublicationCentury 2000
PublicationDate 2024-Oct.-28
PublicationDateYYYYMMDD 2024-10-28
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-28
  day: 28
PublicationDecade 2020
PublicationTitle MILCOM IEEE Military Communications Conference
PublicationTitleAbbrev MILCOM
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001286291
Score 2.2899883
Snippet The dynamic and evolving landscape of cybersecurity demands robust datasets for developing and evaluating Internet of Things (IoT) network security analytical...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computer security
Data collection
Dataset
Internet of Things
Network security
Reviews
Telecommunication traffic
Testing
Topology
Usability
Wireless networks
Title ACI-IoT-2023: A Robust Dataset for Internet of Things Network Security Analysis
URI https://ieeexplore.ieee.org/document/10773916
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1uD6Iv3ibeieBr6tamSerbmI5N3Ca6wd5GLl9gCKto--KvN-lFpyDYp7ZQCEm-nuTLd85B6EpSJiIqGGGgOaGgXEhFmpIYhIpZot1Ps6jyHbPBjN7P43lFVi-4MABQFJ9B4G-Ls3yT6tynylyEc-6Jog3UcPOsJGutJVTc4jzpbKLLSkfzejR86E1GzB92uo1gSIP6-x9OKgWQ9HfQuG5CWT_yEuSZCvTHL3XGf7dxF7W-OXv48QuN9tAGrPbR9prc4AGadHtDMkynxJuZ3-AufkpV_p7hW5k5LMuwW7_iMkPoHlKLS09PPC4rxfFzZXWHayGTFpr176a9AakMFciyw1lGOjYKlU0UFZIJ482oqHZRaBzIM7BSQZtLbWzCjQC3FePtBNpWJ8JaClIYFh2i5ipdwRHCQit3MSmkiSiPQw90RssYophSqdQxavm-WbyWmhmLultO_nh_irb8EHlUCMUZamZvOZw7uM_URTHMnw_WqDQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46wcuLt4l3I_iaubVpmvo2pmPVrRPdwLeRywmIsIq2L_56k150CoJ9SvsQQg6nX87J-c6H0IWgjPuUM8JAhYSCtC7lK0oC4DJgkbI_zaLKN2GDKb19Cp4qsnrBhQGAovgMWm5Y3OXrVOUuVWY9PAwdUXQZrQQ2rOAlXWshpWKP51FnFZ1XnTQvR_GwNx4xd91pQ0GPtuoZfmipFFDS30RJvYiyguSllWeypT5-9Wf89yq3UPObtYfvv_BoGy3BfAdtLDQc3EXjbi8mcTohTs78CnfxQyrz9wxfi8yiWYbtCRaXOUL7khpcqnripKwVx4-V2B2uW5k00bR_M-kNSCWpQJ47IctIx_ieNJGkXDCunRwVVdYPtYV5BkZIaIdCaROFmoMNxsJ2BG2jIm4MBcE18_dQY57OYR9hrqR9mOBC-zQMPAd1WokAfGsbIeUBarq9mb2WXTNm9bYc_vH9DK0NJqPhbBgnd0do3ZnLYYTHj1Eje8vhxIJ_Jk8Lk38CG-Wrhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=MILCOM+IEEE+Military+Communications+Conference&rft.atitle=ACI-IoT-2023%3A+A+Robust+Dataset+for+Internet+of+Things+Network+Security+Analysis&rft.au=Nack%2C+Emily+A.&rft.au=McKenzie%2C+Morgan+C.&rft.au=Bastian%2C+Nathaniel+D.&rft.date=2024-10-28&rft.pub=IEEE&rft.eissn=2155-7586&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMILCOM61039.2024.10773916&rft.externalDocID=10773916