Joint multitask feature learning and classifier design

The problem of classification arises in many realworld applications. Often classification of more than two classes is broken down into a group of binary classification problems using the one-versus-rest or pairwise approaches. For each binary classification problem, feature selection and classifier...

Full description

Saved in:
Bibliographic Details
Published in2013 47th Annual Conference on Information Sciences and Systems (CISS) pp. 1 - 5
Main Authors Gutta, Sandeep, Qi Cheng
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2013
Subjects
Online AccessGet full text
ISBN9781467352376
1467352373
DOI10.1109/CISS.2013.6552296

Cover

Abstract The problem of classification arises in many realworld applications. Often classification of more than two classes is broken down into a group of binary classification problems using the one-versus-rest or pairwise approaches. For each binary classification problem, feature selection and classifier design are usually conducted separately. In this paper, we propose a new multitask learning approach in which feature selection and classifier design for all the binary classification tasks are carried out simultaneously. We consider probabilistic nonlinear kernel classifiers for binary classification. For each binary classifier, we give weights to the features within the kernels. We assume that the matrix consisting of all the feature weights for all the tasks has a sparse component and a low rank component. The sparse component determines the features that are relevant to each classifier, and the low rank component determines the common feature subspace that is relevant to all the classifiers. Experimental results on synthetic data demonstrate that the proposed approach achieves higher classification accuracy compared to the conventional classifiers. The proposed method accurately determines the relevant features that are important to each binary classifier.
AbstractList The problem of classification arises in many realworld applications. Often classification of more than two classes is broken down into a group of binary classification problems using the one-versus-rest or pairwise approaches. For each binary classification problem, feature selection and classifier design are usually conducted separately. In this paper, we propose a new multitask learning approach in which feature selection and classifier design for all the binary classification tasks are carried out simultaneously. We consider probabilistic nonlinear kernel classifiers for binary classification. For each binary classifier, we give weights to the features within the kernels. We assume that the matrix consisting of all the feature weights for all the tasks has a sparse component and a low rank component. The sparse component determines the features that are relevant to each classifier, and the low rank component determines the common feature subspace that is relevant to all the classifiers. Experimental results on synthetic data demonstrate that the proposed approach achieves higher classification accuracy compared to the conventional classifiers. The proposed method accurately determines the relevant features that are important to each binary classifier.
Author Qi Cheng
Gutta, Sandeep
Author_xml – sequence: 1
  givenname: Sandeep
  surname: Gutta
  fullname: Gutta, Sandeep
  email: sgutta@okstate.edu
  organization: Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA
– sequence: 2
  surname: Qi Cheng
  fullname: Qi Cheng
  email: qi.cheng@okstate.edu
  organization: Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA
BookMark eNo1j8FKAzEURSMqaOt8gLjJD0zNSyYvk6UMWisFF1VwVzKTlxKdpjKZLvx7B6ybe7mLc-HM2EU6JGLsFsQCQNj7ZrXZLKQAtUCtpbR4xmZQoVFaKvtxzgpr6v9t8IoVOX8KISYWpVXXDF8OMY18f-zHOLr8xQO58TgQ78kNKaYdd8nzrnc5xxBp4J5y3KUbdhlcn6k49Zy9Pz2-Nc_l-nW5ah7WZQSjxzIE32mcUreuNlgTBle1VSdBV7XXMjhvAhoJNbUBnJ8UsLaAVklQHQg1Z3d_v5GItt9D3LvhZ3tSVb_MREkk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CISS.2013.6552296
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 146735239X
9781467352390
1467352381
9781467352383
EndPage 5
ExternalDocumentID 6552296
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-ffdc56ffd5ba8768e6fa4b4c21548d52fad7f67218ebf1ad5526891693213c103
IEDL.DBID RIE
ISBN 9781467352376
1467352373
IngestDate Wed Aug 27 04:08:59 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-ffdc56ffd5ba8768e6fa4b4c21548d52fad7f67218ebf1ad5526891693213c103
PageCount 5
ParticipantIDs ieee_primary_6552296
PublicationCentury 2000
PublicationDate 2013-March
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-March
PublicationDecade 2010
PublicationTitle 2013 47th Annual Conference on Information Sciences and Systems (CISS)
PublicationTitleAbbrev CISS
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106293
Score 1.510575
Snippet The problem of classification arises in many realworld applications. Often classification of more than two classes is broken down into a group of binary...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Classification
feature selection
Joints
Kernel
Matrix decomposition
multitask learning
Optimization
Sparse matrices
sparsity
Support vector machines
Vectors
Title Joint multitask feature learning and classifier design
URI https://ieeexplore.ieee.org/document/6552296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09b8IwED0BU7v0A6p-y0PHJpD4K55REUWiqkSR2JATnyuEFKo2LP31tU2AturQJUoyWE6i-N353nsHcKcVL_I00xHFjEbM9nikMtQRp5YzarSU0muHx09iOGWjGZ814H6nhUHEQD7D2J-GWr5ZFWu_VdYV3EULSjShKTOx0Wrt91NcbuOgK2i3hHRhBZV0a-lUX4u6qpn0VLf_OJl4YheN60F_dFcJ4DI4gvF2WhtOyTJeV3lcfP5ybPzvvI-hs5fxkecdQJ1AA8tTOPzmQNgGMVotyooEWmGlP5bEYnD6JHU3iVeiS0MKH2IvrENQYgLjowPTwcNLfxjVrRSihYsPqshaU3DhjjzXbv3LUFjNclakPmMxPLXaSCtcNphhbhNtuHeBUd6oJU1okfToGbTKVYnnQNAXS91vKxATlljMcsaVYA74lUlVqi-g7d_A_G3jljGvH_7y79tXcJCGBhOe1XUNrep9jTcO5qv8NnzfLwaWoqY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHtSLH2D8dg8ebaHdj7ZnIgEEYgIk3Mi2O2sISTFaLv56d5cCajx4adoeNts23Tez894bgAeZ8CwNY-lRjKnHdJN7SYzS41RzRpWMoshqhwdD0Zmw3pRPK_C41cIgoiOfoW9PXS1fLbOV3SprCG6ihUTswT5njPG1Wmu3o2KyGwNeTr0lIhNY0IhuTJ3Ka1HWNYNm0mh1RyNL7aJ-OeyP_ioOXtrHMNhMbM0qWfirIvWzz1-ejf-d-QnUd0I-8rKFqFOoYH4GR988CGsgest5XhBHLCzkx4JodF6fpOwn8Upkrkhmg-y5NhhKlON81GHSfhq3Ol7ZTMGbmwih8LRWGRfmyFNpVsAYhZYsZVlocxbFQy1VpIXJB2NMdSAVtz4wibVqCQOaBU16DtV8meMFELTlUvPjCsSABRrjlPFEMAP9iQqTUF5Czb6B2dvaL2NWPvzV37fv4aAzHvRn_e7w-RoOQ9duwnK8bqBavK_w1oB-kd65b_0Fwmel8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+47th+Annual+Conference+on+Information+Sciences+and+Systems+%28CISS%29&rft.atitle=Joint+multitask+feature+learning+and+classifier+design&rft.au=Gutta%2C+Sandeep&rft.au=Qi+Cheng&rft.date=2013-03-01&rft.pub=IEEE&rft.isbn=9781467352376&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FCISS.2013.6552296&rft.externalDocID=6552296
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467352376/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467352376/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467352376/sc.gif&client=summon&freeimage=true