Joint multitask feature learning and classifier design
The problem of classification arises in many realworld applications. Often classification of more than two classes is broken down into a group of binary classification problems using the one-versus-rest or pairwise approaches. For each binary classification problem, feature selection and classifier...
        Saved in:
      
    
          | Published in | 2013 47th Annual Conference on Information Sciences and Systems (CISS) pp. 1 - 5 | 
|---|---|
| Main Authors | , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.03.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9781467352376 1467352373  | 
| DOI | 10.1109/CISS.2013.6552296 | 
Cover
| Abstract | The problem of classification arises in many realworld applications. Often classification of more than two classes is broken down into a group of binary classification problems using the one-versus-rest or pairwise approaches. For each binary classification problem, feature selection and classifier design are usually conducted separately. In this paper, we propose a new multitask learning approach in which feature selection and classifier design for all the binary classification tasks are carried out simultaneously. We consider probabilistic nonlinear kernel classifiers for binary classification. For each binary classifier, we give weights to the features within the kernels. We assume that the matrix consisting of all the feature weights for all the tasks has a sparse component and a low rank component. The sparse component determines the features that are relevant to each classifier, and the low rank component determines the common feature subspace that is relevant to all the classifiers. Experimental results on synthetic data demonstrate that the proposed approach achieves higher classification accuracy compared to the conventional classifiers. The proposed method accurately determines the relevant features that are important to each binary classifier. | 
    
|---|---|
| AbstractList | The problem of classification arises in many realworld applications. Often classification of more than two classes is broken down into a group of binary classification problems using the one-versus-rest or pairwise approaches. For each binary classification problem, feature selection and classifier design are usually conducted separately. In this paper, we propose a new multitask learning approach in which feature selection and classifier design for all the binary classification tasks are carried out simultaneously. We consider probabilistic nonlinear kernel classifiers for binary classification. For each binary classifier, we give weights to the features within the kernels. We assume that the matrix consisting of all the feature weights for all the tasks has a sparse component and a low rank component. The sparse component determines the features that are relevant to each classifier, and the low rank component determines the common feature subspace that is relevant to all the classifiers. Experimental results on synthetic data demonstrate that the proposed approach achieves higher classification accuracy compared to the conventional classifiers. The proposed method accurately determines the relevant features that are important to each binary classifier. | 
    
| Author | Qi Cheng Gutta, Sandeep  | 
    
| Author_xml | – sequence: 1 givenname: Sandeep surname: Gutta fullname: Gutta, Sandeep email: sgutta@okstate.edu organization: Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA – sequence: 2 surname: Qi Cheng fullname: Qi Cheng email: qi.cheng@okstate.edu organization: Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA  | 
    
| BookMark | eNo1j8FKAzEURSMqaOt8gLjJD0zNSyYvk6UMWisFF1VwVzKTlxKdpjKZLvx7B6ybe7mLc-HM2EU6JGLsFsQCQNj7ZrXZLKQAtUCtpbR4xmZQoVFaKvtxzgpr6v9t8IoVOX8KISYWpVXXDF8OMY18f-zHOLr8xQO58TgQ78kNKaYdd8nzrnc5xxBp4J5y3KUbdhlcn6k49Zy9Pz2-Nc_l-nW5ah7WZQSjxzIE32mcUreuNlgTBle1VSdBV7XXMjhvAhoJNbUBnJ8UsLaAVklQHQg1Z3d_v5GItt9D3LvhZ3tSVb_MREkk | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/CISS.2013.6552296 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 146735239X 9781467352390 1467352381 9781467352383  | 
    
| EndPage | 5 | 
    
| ExternalDocumentID | 6552296 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i175t-ffdc56ffd5ba8768e6fa4b4c21548d52fad7f67218ebf1ad5526891693213c103 | 
    
| IEDL.DBID | RIE | 
    
| ISBN | 9781467352376 1467352373  | 
    
| IngestDate | Wed Aug 27 04:08:59 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i175t-ffdc56ffd5ba8768e6fa4b4c21548d52fad7f67218ebf1ad5526891693213c103 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_6552296 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-March | 
    
| PublicationDateYYYYMMDD | 2013-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-March  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2013 47th Annual Conference on Information Sciences and Systems (CISS) | 
    
| PublicationTitleAbbrev | CISS | 
    
| PublicationYear | 2013 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0001106293 | 
    
| Score | 1.510575 | 
    
| Snippet | The problem of classification arises in many realworld applications. Often classification of more than two classes is broken down into a group of binary... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Classification feature selection Joints Kernel Matrix decomposition multitask learning Optimization Sparse matrices sparsity Support vector machines Vectors  | 
    
| Title | Joint multitask feature learning and classifier design | 
    
| URI | https://ieeexplore.ieee.org/document/6552296 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09b8IwED0BU7v0A6p-y0PHJpD4K55REUWiqkSR2JATnyuEFKo2LP31tU2AturQJUoyWE6i-N353nsHcKcVL_I00xHFjEbM9nikMtQRp5YzarSU0muHx09iOGWjGZ814H6nhUHEQD7D2J-GWr5ZFWu_VdYV3EULSjShKTOx0Wrt91NcbuOgK2i3hHRhBZV0a-lUX4u6qpn0VLf_OJl4YheN60F_dFcJ4DI4gvF2WhtOyTJeV3lcfP5ybPzvvI-hs5fxkecdQJ1AA8tTOPzmQNgGMVotyooEWmGlP5bEYnD6JHU3iVeiS0MKH2IvrENQYgLjowPTwcNLfxjVrRSihYsPqshaU3DhjjzXbv3LUFjNclakPmMxPLXaSCtcNphhbhNtuHeBUd6oJU1okfToGbTKVYnnQNAXS91vKxATlljMcsaVYA74lUlVqi-g7d_A_G3jljGvH_7y79tXcJCGBhOe1XUNrep9jTcO5qv8NnzfLwaWoqY | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHtSLH2D8dg8ebaHdj7ZnIgEEYgIk3Mi2O2sISTFaLv56d5cCajx4adoeNts23Tez894bgAeZ8CwNY-lRjKnHdJN7SYzS41RzRpWMoshqhwdD0Zmw3pRPK_C41cIgoiOfoW9PXS1fLbOV3SprCG6ihUTswT5njPG1Wmu3o2KyGwNeTr0lIhNY0IhuTJ3Ka1HWNYNm0mh1RyNL7aJ-OeyP_ioOXtrHMNhMbM0qWfirIvWzz1-ejf-d-QnUd0I-8rKFqFOoYH4GR988CGsgest5XhBHLCzkx4JodF6fpOwn8Upkrkhmg-y5NhhKlON81GHSfhq3Ol7ZTMGbmwih8LRWGRfmyFNpVsAYhZYsZVlocxbFQy1VpIXJB2NMdSAVtz4wibVqCQOaBU16DtV8meMFELTlUvPjCsSABRrjlPFEMAP9iQqTUF5Czb6B2dvaL2NWPvzV37fv4aAzHvRn_e7w-RoOQ9duwnK8bqBavK_w1oB-kd65b_0Fwmel8w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+47th+Annual+Conference+on+Information+Sciences+and+Systems+%28CISS%29&rft.atitle=Joint+multitask+feature+learning+and+classifier+design&rft.au=Gutta%2C+Sandeep&rft.au=Qi+Cheng&rft.date=2013-03-01&rft.pub=IEEE&rft.isbn=9781467352376&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FCISS.2013.6552296&rft.externalDocID=6552296 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467352376/lc.gif&client=summon&freeimage=true | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467352376/mc.gif&client=summon&freeimage=true | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467352376/sc.gif&client=summon&freeimage=true |