Artificial neural network based method for Indian sign language recognition

Sign Language is a language which uses hand gestures, facial expressions and body movements for communication. A sign language consists of either word level signs or fingerspelling. It is the only communication mean for the deaf-dumb community. But the hearing people never try to learn the sign lang...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE Conference on Information and Communication Technologies pp. 1080 - 1085
Main Authors Adithya, V., Vinod, P. R., Gopalakrishnan, Usha
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2013
Subjects
Online AccessGet full text
ISBN9781467357593
1467357596
DOI10.1109/CICT.2013.6558259

Cover

Abstract Sign Language is a language which uses hand gestures, facial expressions and body movements for communication. A sign language consists of either word level signs or fingerspelling. It is the only communication mean for the deaf-dumb community. But the hearing people never try to learn the sign language. So the deaf people cannot interact with the normal people without a sign language interpreter. This causes the isolation of deaf people in the society. So a system that automatically recognizes the sign language is necessary. The implementation of such a system provides a platform for the interaction of hearing disabled people with the rest of the world without an interpreter. In this paper, we propose a method for the automatic recognition of fingerspelling in Indian sign language. The proposed method uses digital image processing techniques and artificial neural network for recognizing different signs.
AbstractList Sign Language is a language which uses hand gestures, facial expressions and body movements for communication. A sign language consists of either word level signs or fingerspelling. It is the only communication mean for the deaf-dumb community. But the hearing people never try to learn the sign language. So the deaf people cannot interact with the normal people without a sign language interpreter. This causes the isolation of deaf people in the society. So a system that automatically recognizes the sign language is necessary. The implementation of such a system provides a platform for the interaction of hearing disabled people with the rest of the world without an interpreter. In this paper, we propose a method for the automatic recognition of fingerspelling in Indian sign language. The proposed method uses digital image processing techniques and artificial neural network for recognizing different signs.
Author Adithya, V.
Vinod, P. R.
Gopalakrishnan, Usha
Author_xml – sequence: 1
  givenname: V.
  surname: Adithya
  fullname: Adithya, V.
  email: adithya@ceconline.edu
  organization: Dept. of Comput. Eng., Coll. of Eng. Chengannur, Chengannur, India
– sequence: 2
  givenname: P. R.
  surname: Vinod
  fullname: Vinod, P. R.
  email: vinod@ceconline.edu
  organization: Dept. of Comput. Eng., Coll. of Eng. Chengannur, Chengannur, India
– sequence: 3
  givenname: Usha
  surname: Gopalakrishnan
  fullname: Gopalakrishnan, Usha
  email: writeto_usha@yahoo.com
  organization: Dept. of Comput. Eng., Musaliar Coll. of Eng. & Technol., Pathanamthitta, India
BookMark eNpVkM1KxDAcxCMqqGsfQLzkBVr_-U6PS_GjuOBlPS9Jm9RoN5G0i_j2Ft2Lp9_MwMxhrtBZTNEhdEOgIgTqu6ZtthUFwiophKaiPkFFrTThUjGhhJan_3zNLlAxTe8AsNQl1ewSPa_zHHzoghlxdIf8i_kr5Q9szeR6vHfzW-qxTxm3sQ8m4ikMEY8mDgczOJxdl4YY5pDiNTr3ZpxcceQKvT7cb5uncvPy2DbrTRmIEnPpLVjSO07Bg_Uds8yAlYxbxZdMc6KNtsJzajn0tAPipfLQ0XrRnmvDVuj2bzc453afOexN_t4dL2A_lm1RMw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CICT.2013.6558259
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467357586
146735757X
1467357588
9781467357579
EndPage 1085
ExternalDocumentID 6558259
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-fb0b1de420f0bfc3b3a0b634b744208418a8b5f42b40d2c01f67f0c292c0f48a3
IEDL.DBID RIE
ISBN 9781467357593
1467357596
IngestDate Wed Aug 27 02:49:06 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-fb0b1de420f0bfc3b3a0b634b744208418a8b5f42b40d2c01f67f0c292c0f48a3
PageCount 6
ParticipantIDs ieee_primary_6558259
PublicationCentury 2000
PublicationDate 2013-April
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-April
PublicationDecade 2010
PublicationTitle 2013 IEEE Conference on Information and Communication Technologies
PublicationTitleAbbrev CICT
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106283
Score 1.7406118
Snippet Sign Language is a language which uses hand gestures, facial expressions and body movements for communication. A sign language consists of either word level...
SourceID ieee
SourceType Publisher
StartPage 1080
SubjectTerms Artificial neural network
Assistive technology
Central moments
Distance transform
Feature extraction
Fourier descriptors
Gesture recognition
Hand segmentation
Image color analysis
Indian sign language
Projections
Shape
Transforms
Vectors
Title Artificial neural network based method for Indian sign language recognition
URI https://ieeexplore.ieee.org/document/6558259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwED6STJ3akpS-0dCxdiRLluSxhIakJaVDAtmCJUtQCk4JzpJfX5_sJLR06KTHIIQenHT3ffcBPMjcaZszHmnBHbpuXGR8waJMpZYJpazyyEaevcnJQrws02UHHg9cGOdcAJ-5GKshll-s7RZdZUOZpvWHJutCV2nZcLWO_hSGbEAeuFtScdSdlPuUTm2bt1FNRrPhaDqaI7CLx-2gP9RVgnEZn8JsP60GU_IZbysT292vjI3_nfcZDI40PvJ-MFDn0HFlH16fNgEeVJ87gsksQxGg4AQtWkEaTWlSP2bJtMTTQxDjQfaOTXKAHK3LASzGz_PRJGoVFaKP-plQRd5QwwonEuqp8ZYbnlMjuTBKYJhdMJ1rk3qRGEGLxFLmpfLUJlld90Ln_AJ65bp0l0C4sYnTHK-8w6iykVmuCi68SHNmnb6CPi7E6qtJmrFq1-D67-4bOEmCzgRCYm6hV2227q629pW5D9v8DU1Npmo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLYKDDABahE3HhhJasdXMqKKqqWHGFqpW2U7toSQUlSlC7-ePCdtBWJg8jFYlg89-73vex9Cj1K71GrKopQzB64bFxmf0yhTwlKulFUe2MiTqRzM-etCLFroaceFcc4F8JmLoRpi-fnKbsBV1pVCVB-a7AAdCc65qNlae48KBT4gC-wtqRgoT8ptUqemzZq4JiVZtzfszQDaxeJm2B_6KsG89E_RZDuxGlXyEW9KE9uvXzkb_zvzM9TZE_nw285EnaOWK9po9LwOAKHq5GFIZxmKAAbHYNNyXKtK4-o5i4cFnB8MKA-8dW3iHehoVXTQvP8y6w2iRlMheq8eCmXkDTE0dzwhnhhvmWGaGMm4URwC7ZymOjXC88RwkieWUC-VJzbJqrrnqWYX6LBYFe4SYWZs4lIGl95BXNnITKuccc-FptalV6gNC7H8rNNmLJs1uP67-wEdD2aT8XI8nI5u0EkSVCcAIHOLDsv1xt1Vtr8092HLvwE5fKm3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Conference+on+Information+and+Communication+Technologies&rft.atitle=Artificial+neural+network+based+method+for+Indian+sign+language+recognition&rft.au=Adithya%2C+V.&rft.au=Vinod%2C+P.+R.&rft.au=Gopalakrishnan%2C+Usha&rft.date=2013-04-01&rft.pub=IEEE&rft.isbn=9781467357593&rft.spage=1080&rft.epage=1085&rft_id=info:doi/10.1109%2FCICT.2013.6558259&rft.externalDocID=6558259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357593/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357593/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357593/sc.gif&client=summon&freeimage=true