Machine learning based lithographic hotspot detection with critical-feature extraction and classification

In this paper, we present a fast and accurate lithographic hotspot detection flow with a novel MLK (Machine Learning Kernel), based on critical feature extraction and classification. In our flow, layout binary image patterns are decomposed/analyzed and critical lithographic hotspot related features...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE International Conference on IC Design and Technology pp. 219 - 222
Main Authors Duo Ding, Xiang Wu, Ghosh, J., Pan, D.Z.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2009
Subjects
Online AccessGet full text
ISBN1424429331
9781424429332
ISSN2381-3555
DOI10.1109/ICICDT.2009.5166300

Cover

Abstract In this paper, we present a fast and accurate lithographic hotspot detection flow with a novel MLK (Machine Learning Kernel), based on critical feature extraction and classification. In our flow, layout binary image patterns are decomposed/analyzed and critical lithographic hotspot related features are defined and employed for low noise MLK supervised training. Combining novel critical feature extraction and MLK supervised training procedure, our proposed hotspot detection flow achieves over 90% detection accuracy on average and much smaller false alarms (10% of actual hotspots) compared with some previous work [9, 13], without CPU time overhead.
AbstractList In this paper, we present a fast and accurate lithographic hotspot detection flow with a novel MLK (Machine Learning Kernel), based on critical feature extraction and classification. In our flow, layout binary image patterns are decomposed/analyzed and critical lithographic hotspot related features are defined and employed for low noise MLK supervised training. Combining novel critical feature extraction and MLK supervised training procedure, our proposed hotspot detection flow achieves over 90% detection accuracy on average and much smaller false alarms (10% of actual hotspots) compared with some previous work [9, 13], without CPU time overhead.
Author Xiang Wu
Duo Ding
Pan, D.Z.
Ghosh, J.
Author_xml – sequence: 1
  surname: Duo Ding
  fullname: Duo Ding
  organization: ECE Dept., Univ. of Texas at Austin, Austin, TX, USA
– sequence: 2
  surname: Xiang Wu
  fullname: Xiang Wu
  organization: ECE Dept., Univ. of Texas at Austin, Austin, TX, USA
– sequence: 3
  givenname: J.
  surname: Ghosh
  fullname: Ghosh, J.
  organization: ECE Dept., Univ. of Texas at Austin, Austin, TX, USA
– sequence: 4
  givenname: D.Z.
  surname: Pan
  fullname: Pan, D.Z.
  organization: ECE Dept., Univ. of Texas at Austin, Austin, TX, USA
BookMark eNo1UMtOwzAQNKKVoKVf0It_IMUb27V9ROFVqYhLOVcbZ9MYBadKjIC_J6hlL6uZnRlpdsYmsYvE2BLECkC4202xKe53q1wIt9KwXkshLtjCGQsqVyp3UrlLNvsHEibsOpcWMqm1nrLZ6LNOWG3MFVsMw7sYR2kJub1m4QV9EyLxlrCPIR54iQNVvA2p6Q49HpvgedOl4dglXlEin0IX-dd45r4PKXhss5owffbE6Tv1eBJgrLhvcRhCPUr-qBs2rbEdaHHec_b2-LArnrPt69OmuNtmAYxOWW1LZZTQAmxtLTklrawUSOlVaT2Cd2MRsFJUuQE0ohZ-XQmyiECll7Wcs-UpNxDR_tiHD-x_9ue3yV_r6WCl
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICDT.2009.5166300
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424429349
142442934X
EndPage 222
ExternalDocumentID 5166300
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-f8b47405018f88e94383d4133c4b8ca1c98571830d271a70f0c6d0e8aa1ebc3f3
IEDL.DBID RIE
ISBN 1424429331
9781424429332
ISSN 2381-3555
IngestDate Wed Aug 27 02:11:40 EDT 2025
IsPeerReviewed false
IsScholarly true
LCCN 2008908577
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f8b47405018f88e94383d4133c4b8ca1c98571830d271a70f0c6d0e8aa1ebc3f3
PageCount 4
ParticipantIDs ieee_primary_5166300
PublicationCentury 2000
PublicationDate 2009-May
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-May
PublicationDecade 2000
PublicationTitle 2009 IEEE International Conference on IC Design and Technology
PublicationTitleAbbrev ICICDT
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453128
ssj0002001151
ssj0055196
Score 2.0640152
Snippet In this paper, we present a fast and accurate lithographic hotspot detection flow with a novel MLK (Machine Learning Kernel), based on critical feature...
SourceID ieee
SourceType Publisher
StartPage 219
SubjectTerms Algorithm design and analysis
Artificial neural networks
Data mining
Fabrication
Feature extraction
Kernel
Machine learning
Manufacturing processes
Semiconductor device manufacture
Semiconductor device noise
Title Machine learning based lithographic hotspot detection with critical-feature extraction and classification
URI https://ieeexplore.ieee.org/document/5166300
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwGLTaTrDwaBFveWDEbRw7iTMXKopUxNBK3ar4RQtSiqp04dfz2XHDQwxscZbIlpO7fL67D6GbmCXSAjITFltNOOMpyXWcwutuuWSu3XHmvMOTp_Rhxh_nybyFbhsvjDHGi89M3136s3y9VltXKhskNHUJUW3UzrK89mo19RSgJowGKv3qD9gc2WnkHkAM8rrRnKAEMDbZmbwA7hjdZT-FcRziiWiUD8bD8fBuWgdbhuf_aMTicWh0gCa7GdTyk7f-tpJ99fEr3PG_UzxEvS_HH35usOwItUx5jPa_hRV20WridZcGh0YTL9ghoMbA45d17vVK4eW6gv_kCmtTeY1XiV2hF6vQUIFY44NEMUDCprZU4KLUWDkO70RLfp_00Gx0Px0-kNCogayAfVTECskzYH4RFVYIk7v4Uw3oyBSXQhVU5SIBDGSRjjNaZJGNVKojI4qCGqmYZSeoU65Lc4pwZjTlMk4V45xrbgv4XmgOoyIRKpHpGeq6RVu811kci7Be53_fvkB79emPEyheok612ZorIBGVvPa75xM9Hr39
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGYCFR4t444GRtHHsJM5cQC00FUMrdaviFy1IKarSha_n2knDQwxscabYsnOO7z33XIRuAhoKA8js0cAoj1EWeYkKIjjuhglq2x3HtnY4HUX9CXuchtMGuq1rYbTWTnymO_bR5fLVUq5tqKwbksg6RG2h7RBuFXFZrVVHVICcUFKR6VeXYrN0pxZ8ADVIylZznHiAsuGmzAsAj5KN-1M1DiqDIuIn3UFv0Lsbl9aW1Rf8aMXikOhhH6WbOZQClLfOuhAd-fHL3vG_kzxA7a-aP_xco9khauj8CO19sytsoUXqlJcaV60mXrDFQIWByc9L5-uFxPNlATflAitdOJVXjm2oF8uqpYJntLMSxQAKq7KoAme5wtKyeCtbcjuljSYP9-Ne36taNXgL4B-FZ7hgMXA_n3DDuU6sAaoCfKSSCS4zIhMeAgpSXwUxyWLf-DJSvuZZRrSQ1NBj1MyXuT5BONaKMBFEkjLGFDMZ_DEUg1EWchmK6BS17KLN3ks3jlm1Xmd_v75GO_1xOpwNB6Onc7Rb5oKsXPECNYvVWl8CpSjEldtJn2ywwU4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+IC+Design+and+Technology&rft.atitle=Machine+learning+based+lithographic+hotspot+detection+with+critical-feature+extraction+and+classification&rft.au=Duo+Ding&rft.au=Xiang+Wu&rft.au=Ghosh%2C+J.&rft.au=Pan%2C+D.Z.&rft.date=2009-05-01&rft.pub=IEEE&rft.isbn=9781424429332&rft.issn=2381-3555&rft.spage=219&rft.epage=222&rft_id=info:doi/10.1109%2FICICDT.2009.5166300&rft.externalDocID=5166300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2381-3555&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2381-3555&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2381-3555&client=summon