Machine learning based lithographic hotspot detection with critical-feature extraction and classification
In this paper, we present a fast and accurate lithographic hotspot detection flow with a novel MLK (Machine Learning Kernel), based on critical feature extraction and classification. In our flow, layout binary image patterns are decomposed/analyzed and critical lithographic hotspot related features...
Saved in:
Published in | 2009 IEEE International Conference on IC Design and Technology pp. 219 - 222 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 1424429331 9781424429332 |
ISSN | 2381-3555 |
DOI | 10.1109/ICICDT.2009.5166300 |
Cover
Abstract | In this paper, we present a fast and accurate lithographic hotspot detection flow with a novel MLK (Machine Learning Kernel), based on critical feature extraction and classification. In our flow, layout binary image patterns are decomposed/analyzed and critical lithographic hotspot related features are defined and employed for low noise MLK supervised training. Combining novel critical feature extraction and MLK supervised training procedure, our proposed hotspot detection flow achieves over 90% detection accuracy on average and much smaller false alarms (10% of actual hotspots) compared with some previous work [9, 13], without CPU time overhead. |
---|---|
AbstractList | In this paper, we present a fast and accurate lithographic hotspot detection flow with a novel MLK (Machine Learning Kernel), based on critical feature extraction and classification. In our flow, layout binary image patterns are decomposed/analyzed and critical lithographic hotspot related features are defined and employed for low noise MLK supervised training. Combining novel critical feature extraction and MLK supervised training procedure, our proposed hotspot detection flow achieves over 90% detection accuracy on average and much smaller false alarms (10% of actual hotspots) compared with some previous work [9, 13], without CPU time overhead. |
Author | Xiang Wu Duo Ding Pan, D.Z. Ghosh, J. |
Author_xml | – sequence: 1 surname: Duo Ding fullname: Duo Ding organization: ECE Dept., Univ. of Texas at Austin, Austin, TX, USA – sequence: 2 surname: Xiang Wu fullname: Xiang Wu organization: ECE Dept., Univ. of Texas at Austin, Austin, TX, USA – sequence: 3 givenname: J. surname: Ghosh fullname: Ghosh, J. organization: ECE Dept., Univ. of Texas at Austin, Austin, TX, USA – sequence: 4 givenname: D.Z. surname: Pan fullname: Pan, D.Z. organization: ECE Dept., Univ. of Texas at Austin, Austin, TX, USA |
BookMark | eNo1UMtOwzAQNKKVoKVf0It_IMUb27V9ROFVqYhLOVcbZ9MYBadKjIC_J6hlL6uZnRlpdsYmsYvE2BLECkC4202xKe53q1wIt9KwXkshLtjCGQsqVyp3UrlLNvsHEibsOpcWMqm1nrLZ6LNOWG3MFVsMw7sYR2kJub1m4QV9EyLxlrCPIR54iQNVvA2p6Q49HpvgedOl4dglXlEin0IX-dd45r4PKXhss5owffbE6Tv1eBJgrLhvcRhCPUr-qBs2rbEdaHHec_b2-LArnrPt69OmuNtmAYxOWW1LZZTQAmxtLTklrawUSOlVaT2Cd2MRsFJUuQE0ohZ-XQmyiECll7Wcs-UpNxDR_tiHD-x_9ue3yV_r6WCl |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICICDT.2009.5166300 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781424429349 142442934X |
EndPage | 222 |
ExternalDocumentID | 5166300 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-f8b47405018f88e94383d4133c4b8ca1c98571830d271a70f0c6d0e8aa1ebc3f3 |
IEDL.DBID | RIE |
ISBN | 1424429331 9781424429332 |
ISSN | 2381-3555 |
IngestDate | Wed Aug 27 02:11:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
LCCN | 2008908577 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-f8b47405018f88e94383d4133c4b8ca1c98571830d271a70f0c6d0e8aa1ebc3f3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_5166300 |
PublicationCentury | 2000 |
PublicationDate | 2009-May |
PublicationDateYYYYMMDD | 2009-05-01 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-May |
PublicationDecade | 2000 |
PublicationTitle | 2009 IEEE International Conference on IC Design and Technology |
PublicationTitleAbbrev | ICICDT |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000453128 ssj0002001151 ssj0055196 |
Score | 2.0640152 |
Snippet | In this paper, we present a fast and accurate lithographic hotspot detection flow with a novel MLK (Machine Learning Kernel), based on critical feature... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 219 |
SubjectTerms | Algorithm design and analysis Artificial neural networks Data mining Fabrication Feature extraction Kernel Machine learning Manufacturing processes Semiconductor device manufacture Semiconductor device noise |
Title | Machine learning based lithographic hotspot detection with critical-feature extraction and classification |
URI | https://ieeexplore.ieee.org/document/5166300 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwGLTaTrDwaBFveWDEbRw7iTMXKopUxNBK3ar4RQtSiqp04dfz2XHDQwxscZbIlpO7fL67D6GbmCXSAjITFltNOOMpyXWcwutuuWSu3XHmvMOTp_Rhxh_nybyFbhsvjDHGi89M3136s3y9VltXKhskNHUJUW3UzrK89mo19RSgJowGKv3qD9gc2WnkHkAM8rrRnKAEMDbZmbwA7hjdZT-FcRziiWiUD8bD8fBuWgdbhuf_aMTicWh0gCa7GdTyk7f-tpJ99fEr3PG_UzxEvS_HH35usOwItUx5jPa_hRV20WridZcGh0YTL9ghoMbA45d17vVK4eW6gv_kCmtTeY1XiV2hF6vQUIFY44NEMUDCprZU4KLUWDkO70RLfp_00Gx0Px0-kNCogayAfVTECskzYH4RFVYIk7v4Uw3oyBSXQhVU5SIBDGSRjjNaZJGNVKojI4qCGqmYZSeoU65Lc4pwZjTlMk4V45xrbgv4XmgOoyIRKpHpGeq6RVu811kci7Be53_fvkB79emPEyheok612ZorIBGVvPa75xM9Hr39 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGYCFR4t444GRtHHsJM5cQC00FUMrdaviFy1IKarSha_n2knDQwxscabYsnOO7z33XIRuAhoKA8js0cAoj1EWeYkKIjjuhglq2x3HtnY4HUX9CXuchtMGuq1rYbTWTnymO_bR5fLVUq5tqKwbksg6RG2h7RBuFXFZrVVHVICcUFKR6VeXYrN0pxZ8ADVIylZznHiAsuGmzAsAj5KN-1M1DiqDIuIn3UFv0Lsbl9aW1Rf8aMXikOhhH6WbOZQClLfOuhAd-fHL3vG_kzxA7a-aP_xco9khauj8CO19sytsoUXqlJcaV60mXrDFQIWByc9L5-uFxPNlATflAitdOJVXjm2oF8uqpYJntLMSxQAKq7KoAme5wtKyeCtbcjuljSYP9-Ne36taNXgL4B-FZ7hgMXA_n3DDuU6sAaoCfKSSCS4zIhMeAgpSXwUxyWLf-DJSvuZZRrSQ1NBj1MyXuT5BONaKMBFEkjLGFDMZ_DEUg1EWchmK6BS17KLN3ks3jlm1Xmd_v75GO_1xOpwNB6Onc7Rb5oKsXPECNYvVWl8CpSjEldtJn2ywwU4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+IC+Design+and+Technology&rft.atitle=Machine+learning+based+lithographic+hotspot+detection+with+critical-feature+extraction+and+classification&rft.au=Duo+Ding&rft.au=Xiang+Wu&rft.au=Ghosh%2C+J.&rft.au=Pan%2C+D.Z.&rft.date=2009-05-01&rft.pub=IEEE&rft.isbn=9781424429332&rft.issn=2381-3555&rft.spage=219&rft.epage=222&rft_id=info:doi/10.1109%2FICICDT.2009.5166300&rft.externalDocID=5166300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2381-3555&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2381-3555&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2381-3555&client=summon |