A hybrid constraint handling mechanism with differential evolution for constrained multiobjective optimization

In real-world applications, the optimization problems usually include some conflicting objectives and subject to many constraints. Much research has been done in the fields of multiobjective optimization and constrained optimization, but little focused on both topics simultaneously. In this study we...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE Congress of Evolutionary Computation (CEC) pp. 1785 - 1792
Main Authors Min-Nan Hsieh, Tsung-Che Chiang, Li-Chen Fu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2011
Subjects
Online AccessGet full text
ISBN1424478340
9781424478347
ISSN1089-778X
DOI10.1109/CEC.2011.5949831

Cover

Abstract In real-world applications, the optimization problems usually include some conflicting objectives and subject to many constraints. Much research has been done in the fields of multiobjective optimization and constrained optimization, but little focused on both topics simultaneously. In this study we present a hybrid constraint handling mechanism, which combines the ε-comparison method and penalty method. Unlike original s-comparison method, we set an individual ε-value to each constraint and control it by the amount of violation. The penalty method deals with the region where constraint violation exceeds the ε-value and guides the search toward the ε-feasible region. The proposed algorithm is based on a well-known multiobjective evolutionary algorithm, NSGA-II, and introduces the operators in differential evolution (DE). A modified DE strategy, DE/better-to-best_feasible/l, is applied. The better individual is selected by tournament selection, and the best individual is selected from an archive. Performance of the proposed algorithm is compared with NSGA-II and an improved version with a self-adaptive fitness function. The proposed algorithm shows competitive results on sixteen public constrained multiobjective optimization problem instances.
AbstractList In real-world applications, the optimization problems usually include some conflicting objectives and subject to many constraints. Much research has been done in the fields of multiobjective optimization and constrained optimization, but little focused on both topics simultaneously. In this study we present a hybrid constraint handling mechanism, which combines the ε-comparison method and penalty method. Unlike original s-comparison method, we set an individual ε-value to each constraint and control it by the amount of violation. The penalty method deals with the region where constraint violation exceeds the ε-value and guides the search toward the ε-feasible region. The proposed algorithm is based on a well-known multiobjective evolutionary algorithm, NSGA-II, and introduces the operators in differential evolution (DE). A modified DE strategy, DE/better-to-best_feasible/l, is applied. The better individual is selected by tournament selection, and the best individual is selected from an archive. Performance of the proposed algorithm is compared with NSGA-II and an improved version with a self-adaptive fitness function. The proposed algorithm shows competitive results on sixteen public constrained multiobjective optimization problem instances.
Author Min-Nan Hsieh
Li-Chen Fu
Tsung-Che Chiang
Author_xml – sequence: 1
  surname: Min-Nan Hsieh
  fullname: Min-Nan Hsieh
  email: r98922094@ntu.edu.tw
  organization: Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan
– sequence: 2
  surname: Tsung-Che Chiang
  fullname: Tsung-Che Chiang
  email: tcchiang@ieee.org
  organization: Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Normal Univ., Taipei, Taiwan
– sequence: 3
  surname: Li-Chen Fu
  fullname: Li-Chen Fu
  email: lichen@ntu.edu.tw
  organization: Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan
BookMark eNpFUMtqwzAQVGkKTdLcC73oB-yuLMmSjsGkDwj00kJvwbJXjYItB1tJSb--Lk3pXHZmmR2WmZFJ6AIScssgZQzMfbEq0gwYS6URRnN2QRZGaSYyIZTmUlyS2Z8QMCFTBtokSun3a7IYhh2MyHPDJUxJWNLtyfa-plUXhtiXPkS6LUPd-PBBW6xG7oeWfvq4pbV3DnsM0ZcNxWPXHKLvAnVd_3-NNW0Pzbi3O6yiPyLt9tG3_qv88d6QK1c2Ay7Oc07eHlavxVOyfnl8LpbrxDMlY-LU-HvOOFOoHQjJrQFrucicZBYtB4PgwGE1MlnnyrpKQV1pyG2GEoDPyd1vrkfEzb73bdmfNue6-DetcGCS
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2011.5949831
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9781424478354
1424478332
9781424478330
1424478359
EndPage 1792
ExternalDocumentID 5949831
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IE
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
ID FETCH-LOGICAL-i175t-f747861317e8f0453b90bb342f51beb309e0f0fec3095d67bfc70dc806b2e5003
IEDL.DBID RIE
ISBN 1424478340
9781424478347
ISSN 1089-778X
IngestDate Wed Aug 27 02:58:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f747861317e8f0453b90bb342f51beb309e0f0fec3095d67bfc70dc806b2e5003
PageCount 8
ParticipantIDs ieee_primary_5949831
PublicationCentury 2000
PublicationDate 2011-June
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-June
PublicationDecade 2010
PublicationTitle 2011 IEEE Congress of Evolutionary Computation (CEC)
PublicationTitleAbbrev CEC
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669350
ssj0014519
Score 1.8630953
Snippet In real-world applications, the optimization problems usually include some conflicting objectives and subject to many constraints. Much research has been done...
SourceID ieee
SourceType Publisher
StartPage 1785
SubjectTerms Additives
Algorithm design and analysis
Constrained Multiobjective Optimization
Constraint Handling
Convergence
Differential Evolution
Diversity reception
Evolutionary computation
Multiobjective Evolutionary Algorithm
Optimization
Welding
Title A hybrid constraint handling mechanism with differential evolution for constrained multiobjective optimization
URI https://ieeexplore.ieee.org/document/5949831
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ1gKbRHf8sBIWidxPjyiqlWFVMRApW5V7JxFgSYIUiT49ZwTJwXEwOYkipJYzt3z3b13hFwmIW4rEHY4ntSJw1OPO0L74HAtJEu4F6kypju7DadzfrMIFi1y1XBhAKAsPoOBGZa5_DRXGxMqGwaCi9iQpneiOKy4Wk08BV2n8E2GzmYQjGxKVVwvEEHGi5rUZRpLNFpP9jiq85dMDEfjUSXsaR_2o-tK6XQmHTKrX7eqNXkabAo5UJ-_lBz_-z37pL-l99G7xnEdkBZkXdKp-ztQ-7t3yd43scIeya7pw4fhd1FlMKVpLVHQUqQBL9M1GArx6m1NTWSX1n1X0H48U3i365siQt7eDSktyxlz-VhZXZqj_VpbYmifzCfj-9HUsd0anBVCkMLRRokfwYEbQawRKPpSMCl97unAlbhlZwKYZhoUjoI0jKRWEUtVzELpQYDG5ZC0szyDI0IjJmLuKz_FFcOV65vuIOhE0Y26KnUTOCY9M5nLl0qQY2nn8eTv06dktwoEm9DJGWkXrxs4RyRRyItyCX0Bn_zDDQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHtQLChh_24NHB93W_ejREAgqEA-QcCNr10ZUNqPDRP96X7duqPHgrduybGu6976-977vIXQZ-bCtANhhOVxFFo0dajHlSosqxklEnUDkMd3xxB_O6O3cm9fQVcWFkVLmxWeyo4d5Lj9OxVqHyroeoyzUpOktj1LqFWytKqICzpO5OkdncghaOKUor2eAIcN5SevSrSUqtSdzHJQZTMK6vX6vkPY0j_vRdyV3O4MGGpcvXFSbPHXWGe-Iz19ajv_9oj3U3hD88H3luvZRTSZN1Cg7PGDzwzfR7je5whZKrvHDh2Z4YaFRpW4ukeFcpgEu45XUJOLl2wrr2C4uO6-ABXnG8t2scAwYeXO3jHFe0Jjyx8Lu4hQs2MpQQ9toNuhPe0PL9GuwlgBCMktpLX6AB3YgQwVQ0eWMcO5SR3k2h007YZIooqSAkRf7AVciILEIic8d6YF5OUD1JE3kIcIBYSF1hRvDmqHCdnV_EHCj4EhtEduRPEItPZmLl0KSY2Hm8fjv0xdoezgdjxajm8ndCdopwsI6kHKK6tnrWp4Brsj4eb6cvgAGmcZa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+Congress+of+Evolutionary+Computation+%28CEC%29&rft.atitle=A+hybrid+constraint+handling+mechanism+with+differential+evolution+for+constrained+multiobjective+optimization&rft.au=Min-Nan+Hsieh&rft.au=Tsung-Che+Chiang&rft.au=Li-Chen+Fu&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781424478347&rft.issn=1089-778X&rft.spage=1785&rft.epage=1792&rft_id=info:doi/10.1109%2FCEC.2011.5949831&rft.externalDocID=5949831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon