A hybrid constraint handling mechanism with differential evolution for constrained multiobjective optimization
In real-world applications, the optimization problems usually include some conflicting objectives and subject to many constraints. Much research has been done in the fields of multiobjective optimization and constrained optimization, but little focused on both topics simultaneously. In this study we...
        Saved in:
      
    
          | Published in | 2011 IEEE Congress of Evolutionary Computation (CEC) pp. 1785 - 1792 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.06.2011
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 1424478340 9781424478347  | 
| ISSN | 1089-778X | 
| DOI | 10.1109/CEC.2011.5949831 | 
Cover
| Abstract | In real-world applications, the optimization problems usually include some conflicting objectives and subject to many constraints. Much research has been done in the fields of multiobjective optimization and constrained optimization, but little focused on both topics simultaneously. In this study we present a hybrid constraint handling mechanism, which combines the ε-comparison method and penalty method. Unlike original s-comparison method, we set an individual ε-value to each constraint and control it by the amount of violation. The penalty method deals with the region where constraint violation exceeds the ε-value and guides the search toward the ε-feasible region. The proposed algorithm is based on a well-known multiobjective evolutionary algorithm, NSGA-II, and introduces the operators in differential evolution (DE). A modified DE strategy, DE/better-to-best_feasible/l, is applied. The better individual is selected by tournament selection, and the best individual is selected from an archive. Performance of the proposed algorithm is compared with NSGA-II and an improved version with a self-adaptive fitness function. The proposed algorithm shows competitive results on sixteen public constrained multiobjective optimization problem instances. | 
    
|---|---|
| AbstractList | In real-world applications, the optimization problems usually include some conflicting objectives and subject to many constraints. Much research has been done in the fields of multiobjective optimization and constrained optimization, but little focused on both topics simultaneously. In this study we present a hybrid constraint handling mechanism, which combines the ε-comparison method and penalty method. Unlike original s-comparison method, we set an individual ε-value to each constraint and control it by the amount of violation. The penalty method deals with the region where constraint violation exceeds the ε-value and guides the search toward the ε-feasible region. The proposed algorithm is based on a well-known multiobjective evolutionary algorithm, NSGA-II, and introduces the operators in differential evolution (DE). A modified DE strategy, DE/better-to-best_feasible/l, is applied. The better individual is selected by tournament selection, and the best individual is selected from an archive. Performance of the proposed algorithm is compared with NSGA-II and an improved version with a self-adaptive fitness function. The proposed algorithm shows competitive results on sixteen public constrained multiobjective optimization problem instances. | 
    
| Author | Min-Nan Hsieh Li-Chen Fu Tsung-Che Chiang  | 
    
| Author_xml | – sequence: 1 surname: Min-Nan Hsieh fullname: Min-Nan Hsieh email: r98922094@ntu.edu.tw organization: Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan – sequence: 2 surname: Tsung-Che Chiang fullname: Tsung-Che Chiang email: tcchiang@ieee.org organization: Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Normal Univ., Taipei, Taiwan – sequence: 3 surname: Li-Chen Fu fullname: Li-Chen Fu email: lichen@ntu.edu.tw organization: Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan  | 
    
| BookMark | eNpFUMtqwzAQVGkKTdLcC73oB-yuLMmSjsGkDwj00kJvwbJXjYItB1tJSb--Lk3pXHZmmR2WmZFJ6AIScssgZQzMfbEq0gwYS6URRnN2QRZGaSYyIZTmUlyS2Z8QMCFTBtokSun3a7IYhh2MyHPDJUxJWNLtyfa-plUXhtiXPkS6LUPd-PBBW6xG7oeWfvq4pbV3DnsM0ZcNxWPXHKLvAnVd_3-NNW0Pzbi3O6yiPyLt9tG3_qv88d6QK1c2Ay7Oc07eHlavxVOyfnl8LpbrxDMlY-LU-HvOOFOoHQjJrQFrucicZBYtB4PgwGE1MlnnyrpKQV1pyG2GEoDPyd1vrkfEzb73bdmfNue6-DetcGCS | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/CEC.2011.5949831 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISBN | 9781424478354 1424478332 9781424478330 1424478359  | 
    
| EndPage | 1792 | 
    
| ExternalDocumentID | 5949831 | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IE 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1  | 
    
| ID | FETCH-LOGICAL-i175t-f747861317e8f0453b90bb342f51beb309e0f0fec3095d67bfc70dc806b2e5003 | 
    
| IEDL.DBID | RIE | 
    
| ISBN | 1424478340 9781424478347  | 
    
| ISSN | 1089-778X | 
    
| IngestDate | Wed Aug 27 02:58:30 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i175t-f747861317e8f0453b90bb342f51beb309e0f0fec3095d67bfc70dc806b2e5003 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | ieee_primary_5949831 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2011-June | 
    
| PublicationDateYYYYMMDD | 2011-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2011 text: 2011-June  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2011 IEEE Congress of Evolutionary Computation (CEC) | 
    
| PublicationTitleAbbrev | CEC | 
    
| PublicationYear | 2011 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0000669350 ssj0014519  | 
    
| Score | 1.8630953 | 
    
| Snippet | In real-world applications, the optimization problems usually include some conflicting objectives and subject to many constraints. Much research has been done... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1785 | 
    
| SubjectTerms | Additives Algorithm design and analysis Constrained Multiobjective Optimization Constraint Handling Convergence Differential Evolution Diversity reception Evolutionary computation Multiobjective Evolutionary Algorithm Optimization Welding  | 
    
| Title | A hybrid constraint handling mechanism with differential evolution for constrained multiobjective optimization | 
    
| URI | https://ieeexplore.ieee.org/document/5949831 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ1gKbRHf8sBIWidxPjyiqlWFVMRApW5V7JxFgSYIUiT49ZwTJwXEwOYkipJYzt3z3b13hFwmIW4rEHY4ntSJw1OPO0L74HAtJEu4F6kypju7DadzfrMIFi1y1XBhAKAsPoOBGZa5_DRXGxMqGwaCi9iQpneiOKy4Wk08BV2n8E2GzmYQjGxKVVwvEEHGi5rUZRpLNFpP9jiq85dMDEfjUSXsaR_2o-tK6XQmHTKrX7eqNXkabAo5UJ-_lBz_-z37pL-l99G7xnEdkBZkXdKp-ztQ-7t3yd43scIeya7pw4fhd1FlMKVpLVHQUqQBL9M1GArx6m1NTWSX1n1X0H48U3i365siQt7eDSktyxlz-VhZXZqj_VpbYmifzCfj-9HUsd0anBVCkMLRRokfwYEbQawRKPpSMCl97unAlbhlZwKYZhoUjoI0jKRWEUtVzELpQYDG5ZC0szyDI0IjJmLuKz_FFcOV65vuIOhE0Y26KnUTOCY9M5nLl0qQY2nn8eTv06dktwoEm9DJGWkXrxs4RyRRyItyCX0Bn_zDDQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHtQLChh_24NHB93W_ejREAgqEA-QcCNr10ZUNqPDRP96X7duqPHgrduybGu6976-977vIXQZ-bCtANhhOVxFFo0dajHlSosqxklEnUDkMd3xxB_O6O3cm9fQVcWFkVLmxWeyo4d5Lj9OxVqHyroeoyzUpOktj1LqFWytKqICzpO5OkdncghaOKUor2eAIcN5SevSrSUqtSdzHJQZTMK6vX6vkPY0j_vRdyV3O4MGGpcvXFSbPHXWGe-Iz19ajv_9oj3U3hD88H3luvZRTSZN1Cg7PGDzwzfR7je5whZKrvHDh2Z4YaFRpW4ukeFcpgEu45XUJOLl2wrr2C4uO6-ABXnG8t2scAwYeXO3jHFe0Jjyx8Lu4hQs2MpQQ9toNuhPe0PL9GuwlgBCMktpLX6AB3YgQwVQ0eWMcO5SR3k2h007YZIooqSAkRf7AVciILEIic8d6YF5OUD1JE3kIcIBYSF1hRvDmqHCdnV_EHCj4EhtEduRPEItPZmLl0KSY2Hm8fjv0xdoezgdjxajm8ndCdopwsI6kHKK6tnrWp4Brsj4eb6cvgAGmcZa | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+Congress+of+Evolutionary+Computation+%28CEC%29&rft.atitle=A+hybrid+constraint+handling+mechanism+with+differential+evolution+for+constrained+multiobjective+optimization&rft.au=Min-Nan+Hsieh&rft.au=Tsung-Che+Chiang&rft.au=Li-Chen+Fu&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781424478347&rft.issn=1089-778X&rft.spage=1785&rft.epage=1792&rft_id=info:doi/10.1109%2FCEC.2011.5949831&rft.externalDocID=5949831 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |