A theory of recursive kernel RX anomaly detection algorithm for hyperspectral imagery

With the development of imaging spectroscopy and the improvement of spectral resolution, the ever-expending hyperspectral datasets lead to huge pressure of data storage, downlink transmission and further processing. Real-time processing which requires immediate decision making is greatly desired in...

Full description

Saved in:
Bibliographic Details
Published inPIERS - FALL : 2017 Progress in Electromagnetics Research Symposium - Fall : 19-22 November 2017, Singapore pp. 1947 - 1952
Main Authors Zhao, Chunhui, Deng, Weiwei
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2017
Subjects
Online AccessGet full text
DOI10.1109/PIERS-FALL.2017.8293457

Cover

Abstract With the development of imaging spectroscopy and the improvement of spectral resolution, the ever-expending hyperspectral datasets lead to huge pressure of data storage, downlink transmission and further processing. Real-time processing which requires immediate decision making is greatly desired in hyperspectral anomaly detection. Kernel Reed-Xiaoli detector (KRXD) is a kernel-based nonlinear version of RXD, it achieves better detection accuracy but inferior detection efficiency. This paper developments a new modified KRXD based on progressive line processing that can implement real-time detection in a line-by-line fashion. A new local causal framework is defined to remain the causality of detection system. Aiming at the defect that the complexities of KRXD is high in calculating the detection process, taking advantage of the Woodbury matrix identity and the matrix inversion lemma to recursively update the kernel Gram matrix and its inversion to meet the requirement of rapid processing. Experimental results show the proposed method significantly solves real-time processing problem and keep detection accuracy unchanged compared to the initial algorithm.
AbstractList With the development of imaging spectroscopy and the improvement of spectral resolution, the ever-expending hyperspectral datasets lead to huge pressure of data storage, downlink transmission and further processing. Real-time processing which requires immediate decision making is greatly desired in hyperspectral anomaly detection. Kernel Reed-Xiaoli detector (KRXD) is a kernel-based nonlinear version of RXD, it achieves better detection accuracy but inferior detection efficiency. This paper developments a new modified KRXD based on progressive line processing that can implement real-time detection in a line-by-line fashion. A new local causal framework is defined to remain the causality of detection system. Aiming at the defect that the complexities of KRXD is high in calculating the detection process, taking advantage of the Woodbury matrix identity and the matrix inversion lemma to recursively update the kernel Gram matrix and its inversion to meet the requirement of rapid processing. Experimental results show the proposed method significantly solves real-time processing problem and keep detection accuracy unchanged compared to the initial algorithm.
Author Deng, Weiwei
Zhao, Chunhui
Author_xml – sequence: 1
  givenname: Chunhui
  surname: Zhao
  fullname: Zhao, Chunhui
  organization: Harbin Engineering University, Harbin, Heilongjiang 150001, China
– sequence: 2
  givenname: Weiwei
  surname: Deng
  fullname: Deng, Weiwei
  organization: Harbin Engineering University, Harbin, Heilongjiang 150001, China
BookMark eNotj8tKw0AYRkdQUGuewIXzAolzyVyyDKW1hYBSLbgrk8yfZjTJhEkU8vYG7OosDpyP7x5d974HhJ4oSSgl2fPbfnN4j7d5USSMUJVolvFUqCsUZUpTwbWkjFJ9i6Jx_CKEMKk5FeIOHXM8NeDDjH2NA1Q_YXS_gL8h9NDiwyc2ve9MO2MLE1ST8z027dkHNzUdrn3AzTxAGIfFBdNi15kzhPkB3dSmHSG6cIWO283HehcXry_7dV7EjioxxbUkRlhuqUoFS0EpQ0qQGhg3VUl4ZgUpaV2K1MBiQXBWWSmlKkEbnlrFV-jxv-sA4DSEZT7Mp8t5_gcLpFRi
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PIERS-FALL.2017.8293457
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISBN 9781538612118
1538612119
EndPage 1952
ExternalDocumentID 8293457
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-f60a5d3d174524e77a0be68e23acb039d50b1fb54ae4e7e532cd6667be8a34d73
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f60a5d3d174524e77a0be68e23acb039d50b1fb54ae4e7e532cd6667be8a34d73
PageCount 6
ParticipantIDs ieee_primary_8293457
PublicationCentury 2000
PublicationDate 2017-Nov.
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov.
PublicationDecade 2010
PublicationTitle PIERS - FALL : 2017 Progress in Electromagnetics Research Symposium - Fall : 19-22 November 2017, Singapore
PublicationTitleAbbrev PIERS-FALL
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683155
Score 2.0266595
Snippet With the development of imaging spectroscopy and the improvement of spectral resolution, the ever-expending hyperspectral datasets lead to huge pressure of...
SourceID ieee
SourceType Publisher
StartPage 1947
SubjectTerms Anomaly detection
Electromagnetics
Hyperspectral imaging
Kernel
Microsoft Windows
Real-time systems
Title A theory of recursive kernel RX anomaly detection algorithm for hyperspectral imagery
URI https://ieeexplore.ieee.org/document/8293457
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AxMSTP8D4Oz14dGNb2607EgNBA4agJNxIu74JcWxmjgP-9bbbxGg8eFu2NmteD9_7Xr_vFaEbR1BXaX5sSUmFRSF2rVBwZjlSKo3oOqmQhiiOH_3hjD7M2byBbndeGAAoxWdgm8fyLF9l0caUyrpcYxNlQRM1A-5XXq1dPcXzOdHYWEu4XCfsTu770ydr0BuNjIIrsOvZP65RKVFkcIDGX_-vxCOv9qaQdvTxqzXjfxd4iDrffj082SHREWpAeoz2SnFn9N5Gsx4u_YpbnMU4NwV2o1nHr5CnkODpHIs0W4tkixUUpTIrxSJ5yfJVsVxjndTipSarlSczFwlerU3fi20HzQb957uhVV-nYK10jlBYse8IpojSHIR5FIJAOBJ8Dh4RkXRIqJgj3VgyKkB_BUa8SGlyE0jgglAVkBPUSrMUThGWRIIeKnVYfcp0EhkRRmjEuR_6ms_RM9Q2wVm8VR0zFnVczv9-fYH2zQZVDr9L1CryDVxpqC_kdbnHn9JOqZg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QY_TkDzD-tgePboy13Y8jMRDUQQhCwo2060MIYzNzHPCvt90mRuPBW9NuSfN6-N73-n2vCN1ZnDal4seGEJQbFGZNw-ceMywhpEJ0lVQITRR7fac7pk8TNqmg-60XBgBy8RmYepjf5cskXOtSWcNT2ESZu4N2GaWUFW6tbUXFdjyi0LEUcTUtvzF4bA9fjE4rCLSGyzXL_388pJLjSOcQ9b52UMhHluY6E2b48as543-3eITq3449PNhi0TGqQHyC9nJ5Z_heQ-MWzh2LG5zMcKpL7Fq1jpeQxhDh4QTzOFnxaIMlZLk2K8Y8ek3SRTZfYZXW4rmiq4UrM-URXqx054tNHY077dFD1ygfVDAWKkvIjJljcSaJVCyE2RRcl1sCHA9swkNhEV8ySzRnglEOahUYsUOp6I0rwOOESpecomqcxHCGsCAC1KdChdWhTKWRIWGEhp7n-I5idPQc1XRwpm9Fz4xpGZeLv6dv0X531AumwWP_-RId6MMq_H5XqJqla7hWwJ-Jm_y8PwHirqzl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=PIERS+-+FALL+%3A+2017+Progress+in+Electromagnetics+Research+Symposium+-+Fall+%3A+19-22+November+2017%2C+Singapore&rft.atitle=A+theory+of+recursive+kernel+RX+anomaly+detection+algorithm+for+hyperspectral+imagery&rft.au=Zhao%2C+Chunhui&rft.au=Deng%2C+Weiwei&rft.date=2017-11-01&rft.pub=IEEE&rft.spage=1947&rft.epage=1952&rft_id=info:doi/10.1109%2FPIERS-FALL.2017.8293457&rft.externalDocID=8293457