A theory of recursive kernel RX anomaly detection algorithm for hyperspectral imagery
With the development of imaging spectroscopy and the improvement of spectral resolution, the ever-expending hyperspectral datasets lead to huge pressure of data storage, downlink transmission and further processing. Real-time processing which requires immediate decision making is greatly desired in...
Saved in:
| Published in | PIERS - FALL : 2017 Progress in Electromagnetics Research Symposium - Fall : 19-22 November 2017, Singapore pp. 1947 - 1952 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.11.2017
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/PIERS-FALL.2017.8293457 |
Cover
| Abstract | With the development of imaging spectroscopy and the improvement of spectral resolution, the ever-expending hyperspectral datasets lead to huge pressure of data storage, downlink transmission and further processing. Real-time processing which requires immediate decision making is greatly desired in hyperspectral anomaly detection. Kernel Reed-Xiaoli detector (KRXD) is a kernel-based nonlinear version of RXD, it achieves better detection accuracy but inferior detection efficiency. This paper developments a new modified KRXD based on progressive line processing that can implement real-time detection in a line-by-line fashion. A new local causal framework is defined to remain the causality of detection system. Aiming at the defect that the complexities of KRXD is high in calculating the detection process, taking advantage of the Woodbury matrix identity and the matrix inversion lemma to recursively update the kernel Gram matrix and its inversion to meet the requirement of rapid processing. Experimental results show the proposed method significantly solves real-time processing problem and keep detection accuracy unchanged compared to the initial algorithm. |
|---|---|
| AbstractList | With the development of imaging spectroscopy and the improvement of spectral resolution, the ever-expending hyperspectral datasets lead to huge pressure of data storage, downlink transmission and further processing. Real-time processing which requires immediate decision making is greatly desired in hyperspectral anomaly detection. Kernel Reed-Xiaoli detector (KRXD) is a kernel-based nonlinear version of RXD, it achieves better detection accuracy but inferior detection efficiency. This paper developments a new modified KRXD based on progressive line processing that can implement real-time detection in a line-by-line fashion. A new local causal framework is defined to remain the causality of detection system. Aiming at the defect that the complexities of KRXD is high in calculating the detection process, taking advantage of the Woodbury matrix identity and the matrix inversion lemma to recursively update the kernel Gram matrix and its inversion to meet the requirement of rapid processing. Experimental results show the proposed method significantly solves real-time processing problem and keep detection accuracy unchanged compared to the initial algorithm. |
| Author | Deng, Weiwei Zhao, Chunhui |
| Author_xml | – sequence: 1 givenname: Chunhui surname: Zhao fullname: Zhao, Chunhui organization: Harbin Engineering University, Harbin, Heilongjiang 150001, China – sequence: 2 givenname: Weiwei surname: Deng fullname: Deng, Weiwei organization: Harbin Engineering University, Harbin, Heilongjiang 150001, China |
| BookMark | eNotj8tKw0AYRkdQUGuewIXzAolzyVyyDKW1hYBSLbgrk8yfZjTJhEkU8vYG7OosDpyP7x5d974HhJ4oSSgl2fPbfnN4j7d5USSMUJVolvFUqCsUZUpTwbWkjFJ9i6Jx_CKEMKk5FeIOHXM8NeDDjH2NA1Q_YXS_gL8h9NDiwyc2ve9MO2MLE1ST8z027dkHNzUdrn3AzTxAGIfFBdNi15kzhPkB3dSmHSG6cIWO283HehcXry_7dV7EjioxxbUkRlhuqUoFS0EpQ0qQGhg3VUl4ZgUpaV2K1MBiQXBWWSmlKkEbnlrFV-jxv-sA4DSEZT7Mp8t5_gcLpFRi |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PIERS-FALL.2017.8293457 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISBN | 9781538612118 1538612119 |
| EndPage | 1952 |
| ExternalDocumentID | 8293457 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-f60a5d3d174524e77a0be68e23acb039d50b1fb54ae4e7e532cd6667be8a34d73 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:52:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-f60a5d3d174524e77a0be68e23acb039d50b1fb54ae4e7e532cd6667be8a34d73 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8293457 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Nov. |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | PIERS - FALL : 2017 Progress in Electromagnetics Research Symposium - Fall : 19-22 November 2017, Singapore |
| PublicationTitleAbbrev | PIERS-FALL |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002683155 |
| Score | 2.0266595 |
| Snippet | With the development of imaging spectroscopy and the improvement of spectral resolution, the ever-expending hyperspectral datasets lead to huge pressure of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1947 |
| SubjectTerms | Anomaly detection Electromagnetics Hyperspectral imaging Kernel Microsoft Windows Real-time systems |
| Title | A theory of recursive kernel RX anomaly detection algorithm for hyperspectral imagery |
| URI | https://ieeexplore.ieee.org/document/8293457 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AxMSTP8D4Oz14dGNb2607EgNBA4agJNxIu74JcWxmjgP-9bbbxGg8eFu2NmteD9_7Xr_vFaEbR1BXaX5sSUmFRSF2rVBwZjlSKo3oOqmQhiiOH_3hjD7M2byBbndeGAAoxWdgm8fyLF9l0caUyrpcYxNlQRM1A-5XXq1dPcXzOdHYWEu4XCfsTu770ydr0BuNjIIrsOvZP65RKVFkcIDGX_-vxCOv9qaQdvTxqzXjfxd4iDrffj082SHREWpAeoz2SnFn9N5Gsx4u_YpbnMU4NwV2o1nHr5CnkODpHIs0W4tkixUUpTIrxSJ5yfJVsVxjndTipSarlSczFwlerU3fi20HzQb957uhVV-nYK10jlBYse8IpojSHIR5FIJAOBJ8Dh4RkXRIqJgj3VgyKkB_BUa8SGlyE0jgglAVkBPUSrMUThGWRIIeKnVYfcp0EhkRRmjEuR_6ms_RM9Q2wVm8VR0zFnVczv9-fYH2zQZVDr9L1CryDVxpqC_kdbnHn9JOqZg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QY_TkDzD-tgePboy13Y8jMRDUQQhCwo2060MIYzNzHPCvt90mRuPBW9NuSfN6-N73-n2vCN1ZnDal4seGEJQbFGZNw-ceMywhpEJ0lVQITRR7fac7pk8TNqmg-60XBgBy8RmYepjf5cskXOtSWcNT2ESZu4N2GaWUFW6tbUXFdjyi0LEUcTUtvzF4bA9fjE4rCLSGyzXL_388pJLjSOcQ9b52UMhHluY6E2b48as543-3eITq3449PNhi0TGqQHyC9nJ5Z_heQ-MWzh2LG5zMcKpL7Fq1jpeQxhDh4QTzOFnxaIMlZLk2K8Y8ek3SRTZfYZXW4rmiq4UrM-URXqx054tNHY077dFD1ygfVDAWKkvIjJljcSaJVCyE2RRcl1sCHA9swkNhEV8ySzRnglEOahUYsUOp6I0rwOOESpecomqcxHCGsCAC1KdChdWhTKWRIWGEhp7n-I5idPQc1XRwpm9Fz4xpGZeLv6dv0X531AumwWP_-RId6MMq_H5XqJqla7hWwJ-Jm_y8PwHirqzl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=PIERS+-+FALL+%3A+2017+Progress+in+Electromagnetics+Research+Symposium+-+Fall+%3A+19-22+November+2017%2C+Singapore&rft.atitle=A+theory+of+recursive+kernel+RX+anomaly+detection+algorithm+for+hyperspectral+imagery&rft.au=Zhao%2C+Chunhui&rft.au=Deng%2C+Weiwei&rft.date=2017-11-01&rft.pub=IEEE&rft.spage=1947&rft.epage=1952&rft_id=info:doi/10.1109%2FPIERS-FALL.2017.8293457&rft.externalDocID=8293457 |