An improved mean shift algorithm for moving object tracking
Moving object tracking is one of the key technologies in video surveillance. Mean shift algorithm fails to track the moving object in complicated environment. In this paper, a new strategy is proposed to improve the tracking ability of mean shift algorithm, in which the contrast between object and b...
Saved in:
Published in | 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE) pp. 1425 - 1429 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2015
|
Subjects | |
Online Access | Get full text |
ISBN | 9781479958276 1479958271 |
ISSN | 0840-7789 |
DOI | 10.1109/CCECE.2015.7129489 |
Cover
Abstract | Moving object tracking is one of the key technologies in video surveillance. Mean shift algorithm fails to track the moving object in complicated environment. In this paper, a new strategy is proposed to improve the tracking ability of mean shift algorithm, in which the contrast between object and background along with similarity evaluation are applied for generating and updating object model. To eliminate the interference of the most similar features between tracking object and background, the coefficient ratio of the object to surrounding environment is first imported to generate the object model. To make sure the accuracy of updating object model, the effective way that combines similarity evaluation and Kalman filtering prediction is then applied for judge whether the tracking object is sheltered by other objects or background. The experimental results have shown that the proposed method can tack the moving object stably. |
---|---|
AbstractList | Moving object tracking is one of the key technologies in video surveillance. Mean shift algorithm fails to track the moving object in complicated environment. In this paper, a new strategy is proposed to improve the tracking ability of mean shift algorithm, in which the contrast between object and background along with similarity evaluation are applied for generating and updating object model. To eliminate the interference of the most similar features between tracking object and background, the coefficient ratio of the object to surrounding environment is first imported to generate the object model. To make sure the accuracy of updating object model, the effective way that combines similarity evaluation and Kalman filtering prediction is then applied for judge whether the tracking object is sheltered by other objects or background. The experimental results have shown that the proposed method can tack the moving object stably. |
Author | Dan Zhang Ning Li Xiaorong Gu Tao Xu Li Huang Wei Liu |
Author_xml | – sequence: 1 surname: Ning Li fullname: Ning Li email: lnee@nuaa.edu.cn organization: Key Lab. of Radar Imaging & Microwave Photonics, Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China – sequence: 2 surname: Dan Zhang fullname: Dan Zhang email: zhangdan102900@163.com organization: Coll. of Electron. & Inf. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China – sequence: 3 surname: Xiaorong Gu fullname: Xiaorong Gu email: guxiaorong_0623@163.com organization: Coll. of Sci., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China – sequence: 4 surname: Li Huang fullname: Li Huang email: 573236587@qq.com organization: Coll. of Electron. & Inf. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China – sequence: 5 surname: Wei Liu fullname: Wei Liu email: liuweibaozy@163.com organization: Coll. of Electron. & Inf. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China – sequence: 6 surname: Tao Xu fullname: Tao Xu email: txu@cauc.edu.cn organization: Inf. Technol. Res. Base of Civil Aviation Adm. of China, Civil Aviation Univ. of China, Tianjin, China |
BookMark | eNo1j91KwzAYQCNOcJ17Ab3JC3Qm6ZfmC16NUn9g4I1ejzQ_W-bajLQMfHsF59Xh3Bw4BZkNafCE3HO24pzpx6Zpm3YlGJcrxYUG1Fek4KC0lig0XpOlVvjvqp6ROUNgpVKob0kxjgfGGGANc_K0HmjsTzmdvaO9NwMd9zFM1Bx3Kcdp39OQMu3TOQ47mrqDtxOdsrFfv35HboI5jn554YJ8PrcfzWu5eX95a9abMnIlpzJUFiwGV6EQ2FXWqtrJgKC9AifRBo7SS6tCDUabEKwLHDoFtUM0IFS1IA9_3ei9355y7E3-3l7Gqx_2REyv |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CCECE.2015.7129489 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1479958298 9781479958290 |
EndPage | 1429 |
ExternalDocumentID | 7129489 |
Genre | orig-research |
GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-f3c4c8fd38228b3cc76d5f849e74d58cf185e5c7f64a9affcdf14b746d88a4273 |
IEDL.DBID | RIE |
ISBN | 9781479958276 1479958271 |
ISSN | 0840-7789 |
IngestDate | Wed Aug 27 02:14:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-f3c4c8fd38228b3cc76d5f849e74d58cf185e5c7f64a9affcdf14b746d88a4273 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7129489 |
PublicationCentury | 2000 |
PublicationDate | 2015-May |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-May |
PublicationDecade | 2010 |
PublicationTitle | 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE) |
PublicationTitleAbbrev | CCECE |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0004864 ssj0001947804 |
Score | 1.6190227 |
Snippet | Moving object tracking is one of the key technologies in video surveillance. Mean shift algorithm fails to track the moving object in complicated environment.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1425 |
SubjectTerms | Conferences Decision support systems Face Face recognition Handheld computers Kalman filtering prediction mean shift algorithm moving object tracking object model generation Robots video surveillance |
Title | An improved mean shift algorithm for moving object tracking |
URI | https://ieeexplore.ieee.org/document/7129489 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwGLTaTrDwaBFveWAkaYKd2BYTilpVSEUMVOpWOZ9tGkGTqqQLvx47SVtADGyJlyT-hjtd7s4I3ZiYRlLw0JMghUeJ5B6noD1CA0kUkSQEFxQeP8WjCX2cRtMWut1mYbTWlflM--6y-pevClg7qazPLDhRLtqozZios1o7PUVQ16Wzy0TyujqKO8cc46IKdbn2M37Hwk3XU3Mfb9I0gegnySAZOMtX5DeP-3HuSgU7wwM03rxw7TZ589dl6sPnry7H_37RIertAn74eQtdR6il82O0_62bsIvuH3KcVYqDVnihZY4_5pkpsXx_LVZZOV9gS3fxohIkcJE6OQeXKwlOeu-hyXDwkoy85qQFL7P0ofQMAQrcKGLpAk8JAItVZDgVmlEVcTAW1XUEzE5WCmkMKBPSlNFYcS6pZUAnqJMXuT5FOA5MqCljoJ13LrBQYLileUzaJTAsPENdtw2zZV2mMWt24Pzv5Qu050ZROwwvUadcrfWVZQFlel2N_wvFPqps |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwHP1lzoN68WMav-3Bo7AhhbbxZMiWqdviYUt2W0o_HNGBmeziX28LbFPjwRv0ArQk7_F47xXgWoc44Ix6DhecOdjn1KFYKMfHLe5Ln_uesEHh_iDsjvDjOBjX4GaVhVFKFeYz5drD4l--zMTCSmVNYsAJU7YBm4H5qiBlWmutqDBs23TWqUhalkdR65kjlBWxLtt_Rm-Jt2x7qs7DZZ6mxZpR1I7a1vQVuNUFf-y8UgBPZxf6y1su_Sav7iKPXfH5q83xv8-0B4friB96XoHXPtRUegA739oJG3B3n6Kk0ByURDPFU_QxTXSO-NtLNk_y6QwZwotmhSSBstgKOiifc2HF90MYddrDqOtUey04iSEQuaN9gQXV0jeEgca-ECSUgaaYKYJlQIU2uK4CQczacsa1FlJ7OCY4lJRybDjQEdTTLFXHgMKW9hQmRCjrnmsZMNDUED3CzZDQxDuBhp2GyXtZpzGpZuD07-Er2OoO-71J72HwdAbbdllKv-E51PP5Ql0YTpDHl8Wr8AXywq29 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+28th+Canadian+Conference+on+Electrical+and+Computer+Engineering+%28CCECE%29&rft.atitle=An+improved+mean+shift+algorithm+for+moving+object+tracking&rft.au=Ning+Li&rft.au=Dan+Zhang&rft.au=Xiaorong+Gu&rft.au=Li+Huang&rft.date=2015-05-01&rft.pub=IEEE&rft.isbn=9781479958276&rft.issn=0840-7789&rft.spage=1425&rft.epage=1429&rft_id=info:doi/10.1109%2FCCECE.2015.7129489&rft.externalDocID=7129489 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0840-7789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0840-7789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0840-7789&client=summon |