An improved mean shift algorithm for moving object tracking

Moving object tracking is one of the key technologies in video surveillance. Mean shift algorithm fails to track the moving object in complicated environment. In this paper, a new strategy is proposed to improve the tracking ability of mean shift algorithm, in which the contrast between object and b...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE) pp. 1425 - 1429
Main Authors Ning Li, Dan Zhang, Xiaorong Gu, Li Huang, Wei Liu, Tao Xu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2015
Subjects
Online AccessGet full text
ISBN9781479958276
1479958271
ISSN0840-7789
DOI10.1109/CCECE.2015.7129489

Cover

Abstract Moving object tracking is one of the key technologies in video surveillance. Mean shift algorithm fails to track the moving object in complicated environment. In this paper, a new strategy is proposed to improve the tracking ability of mean shift algorithm, in which the contrast between object and background along with similarity evaluation are applied for generating and updating object model. To eliminate the interference of the most similar features between tracking object and background, the coefficient ratio of the object to surrounding environment is first imported to generate the object model. To make sure the accuracy of updating object model, the effective way that combines similarity evaluation and Kalman filtering prediction is then applied for judge whether the tracking object is sheltered by other objects or background. The experimental results have shown that the proposed method can tack the moving object stably.
AbstractList Moving object tracking is one of the key technologies in video surveillance. Mean shift algorithm fails to track the moving object in complicated environment. In this paper, a new strategy is proposed to improve the tracking ability of mean shift algorithm, in which the contrast between object and background along with similarity evaluation are applied for generating and updating object model. To eliminate the interference of the most similar features between tracking object and background, the coefficient ratio of the object to surrounding environment is first imported to generate the object model. To make sure the accuracy of updating object model, the effective way that combines similarity evaluation and Kalman filtering prediction is then applied for judge whether the tracking object is sheltered by other objects or background. The experimental results have shown that the proposed method can tack the moving object stably.
Author Dan Zhang
Ning Li
Xiaorong Gu
Tao Xu
Li Huang
Wei Liu
Author_xml – sequence: 1
  surname: Ning Li
  fullname: Ning Li
  email: lnee@nuaa.edu.cn
  organization: Key Lab. of Radar Imaging & Microwave Photonics, Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China
– sequence: 2
  surname: Dan Zhang
  fullname: Dan Zhang
  email: zhangdan102900@163.com
  organization: Coll. of Electron. & Inf. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China
– sequence: 3
  surname: Xiaorong Gu
  fullname: Xiaorong Gu
  email: guxiaorong_0623@163.com
  organization: Coll. of Sci., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China
– sequence: 4
  surname: Li Huang
  fullname: Li Huang
  email: 573236587@qq.com
  organization: Coll. of Electron. & Inf. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China
– sequence: 5
  surname: Wei Liu
  fullname: Wei Liu
  email: liuweibaozy@163.com
  organization: Coll. of Electron. & Inf. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China
– sequence: 6
  surname: Tao Xu
  fullname: Tao Xu
  email: txu@cauc.edu.cn
  organization: Inf. Technol. Res. Base of Civil Aviation Adm. of China, Civil Aviation Univ. of China, Tianjin, China
BookMark eNo1j91KwzAYQCNOcJ17Ab3JC3Qm6ZfmC16NUn9g4I1ejzQ_W-bajLQMfHsF59Xh3Bw4BZkNafCE3HO24pzpx6Zpm3YlGJcrxYUG1Fek4KC0lig0XpOlVvjvqp6ROUNgpVKob0kxjgfGGGANc_K0HmjsTzmdvaO9NwMd9zFM1Bx3Kcdp39OQMu3TOQ47mrqDtxOdsrFfv35HboI5jn554YJ8PrcfzWu5eX95a9abMnIlpzJUFiwGV6EQ2FXWqtrJgKC9AifRBo7SS6tCDUabEKwLHDoFtUM0IFS1IA9_3ei9355y7E3-3l7Gqx_2REyv
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CCECE.2015.7129489
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1479958298
9781479958290
EndPage 1429
ExternalDocumentID 7129489
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-f3c4c8fd38228b3cc76d5f849e74d58cf185e5c7f64a9affcdf14b746d88a4273
IEDL.DBID RIE
ISBN 9781479958276
1479958271
ISSN 0840-7789
IngestDate Wed Aug 27 02:14:52 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f3c4c8fd38228b3cc76d5f849e74d58cf185e5c7f64a9affcdf14b746d88a4273
PageCount 5
ParticipantIDs ieee_primary_7129489
PublicationCentury 2000
PublicationDate 2015-May
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-May
PublicationDecade 2010
PublicationTitle 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE)
PublicationTitleAbbrev CCECE
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0004864
ssj0001947804
Score 1.6190227
Snippet Moving object tracking is one of the key technologies in video surveillance. Mean shift algorithm fails to track the moving object in complicated environment....
SourceID ieee
SourceType Publisher
StartPage 1425
SubjectTerms Conferences
Decision support systems
Face
Face recognition
Handheld computers
Kalman filtering prediction
mean shift algorithm
moving object tracking
object model generation
Robots
video surveillance
Title An improved mean shift algorithm for moving object tracking
URI https://ieeexplore.ieee.org/document/7129489
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwGLTaTrDwaBFveWAkaYKd2BYTilpVSEUMVOpWOZ9tGkGTqqQLvx47SVtADGyJlyT-hjtd7s4I3ZiYRlLw0JMghUeJ5B6noD1CA0kUkSQEFxQeP8WjCX2cRtMWut1mYbTWlflM--6y-pevClg7qazPLDhRLtqozZios1o7PUVQ16Wzy0TyujqKO8cc46IKdbn2M37Hwk3XU3Mfb9I0gegnySAZOMtX5DeP-3HuSgU7wwM03rxw7TZ589dl6sPnry7H_37RIertAn74eQtdR6il82O0_62bsIvuH3KcVYqDVnihZY4_5pkpsXx_LVZZOV9gS3fxohIkcJE6OQeXKwlOeu-hyXDwkoy85qQFL7P0ofQMAQrcKGLpAk8JAItVZDgVmlEVcTAW1XUEzE5WCmkMKBPSlNFYcS6pZUAnqJMXuT5FOA5MqCljoJ13LrBQYLileUzaJTAsPENdtw2zZV2mMWt24Pzv5Qu050ZROwwvUadcrfWVZQFlel2N_wvFPqps
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwHP1lzoN68WMav-3Bo7AhhbbxZMiWqdviYUt2W0o_HNGBmeziX28LbFPjwRv0ArQk7_F47xXgWoc44Ix6DhecOdjn1KFYKMfHLe5Ln_uesEHh_iDsjvDjOBjX4GaVhVFKFeYz5drD4l--zMTCSmVNYsAJU7YBm4H5qiBlWmutqDBs23TWqUhalkdR65kjlBWxLtt_Rm-Jt2x7qs7DZZ6mxZpR1I7a1vQVuNUFf-y8UgBPZxf6y1su_Sav7iKPXfH5q83xv8-0B4friB96XoHXPtRUegA739oJG3B3n6Kk0ByURDPFU_QxTXSO-NtLNk_y6QwZwotmhSSBstgKOiifc2HF90MYddrDqOtUey04iSEQuaN9gQXV0jeEgca-ECSUgaaYKYJlQIU2uK4CQczacsa1FlJ7OCY4lJRybDjQEdTTLFXHgMKW9hQmRCjrnmsZMNDUED3CzZDQxDuBhp2GyXtZpzGpZuD07-Er2OoO-71J72HwdAbbdllKv-E51PP5Ql0YTpDHl8Wr8AXywq29
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+28th+Canadian+Conference+on+Electrical+and+Computer+Engineering+%28CCECE%29&rft.atitle=An+improved+mean+shift+algorithm+for+moving+object+tracking&rft.au=Ning+Li&rft.au=Dan+Zhang&rft.au=Xiaorong+Gu&rft.au=Li+Huang&rft.date=2015-05-01&rft.pub=IEEE&rft.isbn=9781479958276&rft.issn=0840-7789&rft.spage=1425&rft.epage=1429&rft_id=info:doi/10.1109%2FCCECE.2015.7129489&rft.externalDocID=7129489
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0840-7789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0840-7789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0840-7789&client=summon