Arrhythmia Beat Classification Using Pruned Fuzzy K-Nearest Neighbor Classifier
In this paper, pruned fuzzy k-nearest neighbor (PFKNN) classifier is proposed to classify different types of arrhythmia beats present in the MIT-BIH Arrhythmia database. We have tested our classifier on ~103100 beats for six beat types present in the database. Fuzzy KNN (FKNN) can be implemented ver...
Saved in:
Published in | 2009 International Conference of Soft Computing and Pattern Recognition pp. 37 - 42 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 1424453305 9781424453306 |
DOI | 10.1109/SoCPaR.2009.20 |
Cover
Abstract | In this paper, pruned fuzzy k-nearest neighbor (PFKNN) classifier is proposed to classify different types of arrhythmia beats present in the MIT-BIH Arrhythmia database. We have tested our classifier on ~103100 beats for six beat types present in the database. Fuzzy KNN (FKNN) can be implemented very easily but large number of training examples used for classification which can be very time consuming and requires large storage space. Hence, we have proposed a time efficient pruning algorithm especially suitable for FKNN which can maintain good classification accuracy with appropriate retained ratio of training data. By using the pruning algorithm with Fuzzy KNN, we have achieved beat classification accuracy of 97% and geometric mean of sensitivity is 94.5% with only 19% of the total training examples. The accuracy and sensitivity is comparable to FKNN when all the training data is used. |
---|---|
AbstractList | In this paper, pruned fuzzy k-nearest neighbor (PFKNN) classifier is proposed to classify different types of arrhythmia beats present in the MIT-BIH Arrhythmia database. We have tested our classifier on ~103100 beats for six beat types present in the database. Fuzzy KNN (FKNN) can be implemented very easily but large number of training examples used for classification which can be very time consuming and requires large storage space. Hence, we have proposed a time efficient pruning algorithm especially suitable for FKNN which can maintain good classification accuracy with appropriate retained ratio of training data. By using the pruning algorithm with Fuzzy KNN, we have achieved beat classification accuracy of 97% and geometric mean of sensitivity is 94.5% with only 19% of the total training examples. The accuracy and sensitivity is comparable to FKNN when all the training data is used. |
Author | Akram, M.U. Arif, M. Afsar, F.A. |
Author_xml | – sequence: 1 givenname: M. surname: Arif fullname: Arif, M. organization: Dept. of Electr. Eng., Air Univ., Islamabad, Pakistan – sequence: 2 givenname: M.U. surname: Akram fullname: Akram, M.U. organization: Elixir Technol. Pakistan (Pvt) Ltd., Islamabad, Pakistan – sequence: 3 givenname: F.A. surname: Afsar fullname: Afsar, F.A. organization: Dept. of Comp. & Inf. Sci., PIEAS, Islamabad, Pakistan |
BookMark | eNo9jj1PwzAURY0ACVK6srD4D6TYfv6IxxJRQFRtBXSunOS5sdQmyEmH9NcTCcRyz3Lu1U3IVdM2SMg9ZzPOmX38bPON-5gJxuwYFyRhRlsFmbHmkiRcCikVAFM3ZNp1oWBCG51JYW_Jeh5jPfT1MTj6hK6n-cGNig-l60Pb0G0Xmj3dxFODFV2czueBvqcrdBG7nq4w7Ouijf8ljHfk2rtDh9M_Tsh28fyVv6bL9ctbPl-mgRvVpx7AWpMhY6XQ3ouy0MyDwfFWZbSvKlRaYIa-sOUIAxWXrgQmRwsqp2BCHn53AyLuvmM4ujjsFOhMKwk_VBdRlQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SoCPaR.2009.20 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 0769538797 9780769538792 |
EndPage | 42 |
ExternalDocumentID | 5368654 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-f339978e00c26ff2cb60f37e768d76fdde562e8efb9ce8e73d14ac3040f33da53 |
IEDL.DBID | RIE |
ISBN | 1424453305 9781424453306 |
IngestDate | Wed Aug 27 02:49:00 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-f339978e00c26ff2cb60f37e768d76fdde562e8efb9ce8e73d14ac3040f33da53 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5368654 |
PublicationCentury | 2000 |
PublicationDate | 2009-Dec. |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-Dec. |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference of Soft Computing and Pattern Recognition |
PublicationTitleAbbrev | SOCPAR |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026768429 ssj0000452814 |
Score | 1.5211806 |
Snippet | In this paper, pruned fuzzy k-nearest neighbor (PFKNN) classifier is proposed to classify different types of arrhythmia beats present in the MIT-BIH Arrhythmia... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 37 |
SubjectTerms | Arrhythmia Decision support systems ECG Electrocardiography Electronic mail Feature extraction Fuzzy Classifier Fuzzy logic K-Nearest Neighbor Neural networks Pattern recognition Pruning Training data Wavelet analysis |
Title | Arrhythmia Beat Classification Using Pruned Fuzzy K-Nearest Neighbor Classifier |
URI | https://ieeexplore.ieee.org/document/5368654 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyACuItD4ykdeLYrkeoqCpQSwVU6lYl9lmtEC0KydD-emwnDQgxMOWhnJTcOXf2-e77ELpWStOUchNIadcmMRNRkEjQQaIiUKIHnHr2htGYD6fxw4zNGuim7oUBAF98Bh136vfy9VoVLlXWZZT3OIubqCmELHu1dmMn4n5HSdb5FQcV3vOsTr6XyxVRsh3EU3XNKxDHkMjuy7o_SZ5L_ErH_f2DasVHmsE-Gu3esSwweesUedpR21_wjf_9iAN09N3Thyd1tDpEDVi10dNtli02-eJ9meA765Wx58h01UPeYNgXFFixwjpjPCi22w1-DMYO9vYzx2OXVbVDqBaC7AhNB_ev_WFQUSwESztvyAND7QTFmoQQFXFjIpVyYqgAq0wtuLG-z86PoAcmlcoeBNVhnChq_3wrqRNGj1FrtV7BCcKGyIQoBpLbZwwzachNChAJrR1tAjlFbaeM-UeJojGv9HD29-1ztBdVTA0kvECtPCvg0ob_PL3ydv8CHmqr4Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pSA8Zvd_DoYFvXbj0qkaDAJAoJN7K1r4EYwcztAH-9bTemMR487SN7yfb69vr6-t7vh9AN5wInmEqbMbU28Ung2TEDYcfcAx6EQLFhbxhGtDfxn6ZkWkO3VS8MAJjiM2jpU7OXL1Y816myNsE0pMTfQbvE9wOv6NbaWo9HzZ4SqzIsGiw8NLxOpptLl1GSLchTeU1LGEfXYe3XVWcUvxQIlpr9-wfZiplrugdouH3LosTkrZVnSYtvfgE4_vczDlHzu6vPGlXz1RGqwbKBnu_SdL7O5u-L2LpXftkyLJm6fsgMmWVKCpRYrtyx1c03m7XVtyMNfPuZWZHOqyojqoQgbaJJ92Hc6dklyYK9UJFDZkusQhQ1KI7DPSqlxxPqSByAUqYIqFTeT0VIEIJMGFeHAAvXjzlW_76SFDHBx6i-XC3hBFnSYbHDCTCqnpFEJi6VCYAXCKGJE5xT1NDKmH0UOBqzUg9nf9--Rnu98XAwGzxG_XO075W8DY57gepZmsOlCgay5MrYwBdOYK8s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+of+Soft+Computing+and+Pattern+Recognition&rft.atitle=Arrhythmia+Beat+Classification+Using+Pruned+Fuzzy+K-Nearest+Neighbor+Classifier&rft.au=Arif%2C+M.&rft.au=Akram%2C+M.U.&rft.au=Afsar%2C+F.A.&rft.date=2009-12-01&rft.pub=IEEE&rft.isbn=9781424453306&rft.spage=37&rft.epage=42&rft_id=info:doi/10.1109%2FSoCPaR.2009.20&rft.externalDocID=5368654 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424453306/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424453306/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424453306/sc.gif&client=summon&freeimage=true |