Distributed labelling of audio sources in wireless acoustic sensor networks using consensus and matching

In this paper, we propose a new method for distributed labelling of audio sources in wireless acoustic sensor networks (WASNs). We consider WASNs comprising of nodes equipped with multiple microphones observing signals transmitted by multiple sources. An important step toward a cooperation between t...

Full description

Saved in:
Bibliographic Details
Published in2016 24th European Signal Processing Conference (EUSIPCO) pp. 2345 - 2349
Main Authors Bahari, Mohamad Hasan, Plata-Chaves, Jorge, Bertrand, Alexander, Moonen, Marc
Format Conference Proceeding
LanguageEnglish
Published EURASIP 01.08.2016
Subjects
Online AccessGet full text
ISSN2076-1465
DOI10.1109/EUSIPCO.2016.7760668

Cover

Abstract In this paper, we propose a new method for distributed labelling of audio sources in wireless acoustic sensor networks (WASNs). We consider WASNs comprising of nodes equipped with multiple microphones observing signals transmitted by multiple sources. An important step toward a cooperation between the nodes, e.g. for a voice-activity-detection, is a network-wide consensus on the source labelling such that all nodes assign the same unique label to each source. In this paper, a hierarchical approach is applied such that first a network clustering algorithm is performed and then in each sub-network, the energy signatures of the sources are estimated using a non-negative independent component analysis over the energy patterns observed by the different nodes. Finally the source labels are obtained by an iterative consensus and matching algorithm, which compares and matches the energy signatures estimated in different sub-networks. The experimental results show the effectiveness of the proposed method.
AbstractList In this paper, we propose a new method for distributed labelling of audio sources in wireless acoustic sensor networks (WASNs). We consider WASNs comprising of nodes equipped with multiple microphones observing signals transmitted by multiple sources. An important step toward a cooperation between the nodes, e.g. for a voice-activity-detection, is a network-wide consensus on the source labelling such that all nodes assign the same unique label to each source. In this paper, a hierarchical approach is applied such that first a network clustering algorithm is performed and then in each sub-network, the energy signatures of the sources are estimated using a non-negative independent component analysis over the energy patterns observed by the different nodes. Finally the source labels are obtained by an iterative consensus and matching algorithm, which compares and matches the energy signatures estimated in different sub-networks. The experimental results show the effectiveness of the proposed method.
Author Bahari, Mohamad Hasan
Bertrand, Alexander
Moonen, Marc
Plata-Chaves, Jorge
Author_xml – sequence: 1
  givenname: Mohamad Hasan
  surname: Bahari
  fullname: Bahari, Mohamad Hasan
  email: Mohamadhasan.Bahari@esat.kuleuven.be
– sequence: 2
  givenname: Jorge
  surname: Plata-Chaves
  fullname: Plata-Chaves, Jorge
  email: Jorge.Plata-Chaves@esat.kuleuven.be
– sequence: 3
  givenname: Alexander
  surname: Bertrand
  fullname: Bertrand, Alexander
  email: Alexander.Bertrand@esat.kuleuven.be
– sequence: 4
  givenname: Marc
  surname: Moonen
  fullname: Moonen, Marc
  email: Marc.Moonen@esat.kuleuven.be
BookMark eNotUMtOAjEUrUYTAfkCXfQHBm87ttMuDaKSkGCirEmnvZXGoTXtTIh_L0RWJ-e5OGNyFVNEQu4ZzBgD_bDYfCzf5-sZByZnTSNBSnVBxqA1V5JLIS7JiEMjK_YoxQ2ZlhJa4ApUw0COyO45lD6HdujR0c602HUhftHkqRlcSLSkIVssNER6CBk7LIUam4bSB0sLxpIyjdgfUv4udCinrk3xZAzHYHR0b3q7O8q35NqbruD0jBOyeVl8zt-q1fp1OX9aVYE1oq88t8wYLS1vlTe-1o0XwD3aI9GtE04xcLVDBry2ktcKQVovmBBGgweoJ-Tufzcg4vYnh73Jv9vzMfUfR7BdMw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/EUSIPCO.2016.7760668
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
Institute of Electrical and Electronics Engineers Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 0992862655
9780992862657
EISSN 2076-1465
EndPage 2349
ExternalDocumentID 7760668
Genre orig-research
GroupedDBID 6IE
6IL
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-f2c1aa96c2b8faf397f502fecfaf9bd5d810d3de1023c6238e06cf5155a90f003
IEDL.DBID RIE
IngestDate Wed Aug 27 01:51:21 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f2c1aa96c2b8faf397f502fecfaf9bd5d810d3de1023c6238e06cf5155a90f003
PageCount 5
ParticipantIDs ieee_primary_7760668
PublicationCentury 2000
PublicationDate 2016-Aug.
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-Aug.
PublicationDecade 2010
PublicationTitle 2016 24th European Signal Processing Conference (EUSIPCO)
PublicationTitleAbbrev EUSIPCO
PublicationYear 2016
Publisher EURASIP
Publisher_xml – name: EURASIP
SSID ssib028087106
ssib025355106
Score 1.6528112
Snippet In this paper, we propose a new method for distributed labelling of audio sources in wireless acoustic sensor networks (WASNs). We consider WASNs comprising of...
SourceID ieee
SourceType Publisher
StartPage 2345
SubjectTerms Clustering algorithms
consensus and matching
Distributed labelling
energy signatures
Estimation
Labeling
Microphones
non-negative independent component analysis
Signal processing algorithms
wireless acoustic sensor networks
Wireless communication
Wireless sensor networks
Title Distributed labelling of audio sources in wireless acoustic sensor networks using consensus and matching
URI https://ieeexplore.ieee.org/document/7760668
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDCS1HYSJ55Lq4IEVIJK3SrHPkMFSlCbLPx6bCflSwxsSRRFli-6e7bfvYfQRcyYpDTlQcIND-LUiEDSyASR4IYwSEwEniB7x6fz-GaRLDro8rMXBgA8-QxCd-nP8nWpardVNkxTB7ezLuqmGW96tbb_Dkts4fx2YsgyYpcChLfdcpSI4Xj-cD0b3Ts6Fw_bT_3wVPElZbKLbreDaZgkL2Fd5aF6_6XT-N_R7qHBV_Menn2WpX3UgaKPnq-cQK7ztgKNbeDBS3Hj0mBZ61WJmz38DV4V2IkXv9r8h22u9FZfeGOXuuUaFw1jfIMdV_4JK8fDLja1fbHQ2AJfz8ocoPlk_DiaBq3JQrCyyKEKDFNUSsEVyzMjjYUnJiHMgLI3IteJzijRkQYn8aAsVsqAcGWcMYwUxNiccIB6RVnAIcIypqC1pkQKGhtOhEpjnWunJ5Na2JEfob6bpeVbo6OxbCfo-O_HJ2jHRaoh252iXrWu4cwCgCo_95H_AFjSshE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD3pSA8Zve_DoRrt13XpGCCggiZBwI10_lGg2w7aLv952G_gRD962pVmatnnfp-3zPg8AN8TzOMYhdQKqqUNCzRyOfe34jGrkqUD7qiTITuhgTu4XwaIBbre1MEqpknymXPtY3uXLVBT2qKwThhZuRztgNyCEBFW11mb1eIFJnd_uDL0Imc0AonW9HEas05s_DafdR0voom79sx-uKmVS6R-A8aY7FZfk1S3y2BUfv5Qa_9vfQ9D-Kt-D021iOgINlbTAy52VyLXuVkpCM_WqFOOGqYa8kKsUVqf4GVwl0MoXv5kICE20LM2-YGY2u-kaJhVnPIOWLf8MhWViJ1lhGiYSGuhb8jLbYN7vzboDp7ZZcFYGO-SO9gTmnFHhxZHm2gAUHSBPK2FeWCwDGWEkfamsyIMwaClSiAptrWE4Q9pEhWPQTNJEnQDICVZSSow4w0RTxERIZCytokxogEd8Clp2lJbvlZLGsh6gs78_X4O9wWw8Wo6Gk4dzsG9nraLeXYBmvi7UpYEDeXxVroJP1lK1Xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2016+24th+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=Distributed+labelling+of+audio+sources+in+wireless+acoustic+sensor+networks+using+consensus+and+matching&rft.au=Bahari%2C+Mohamad+Hasan&rft.au=Plata-Chaves%2C+Jorge&rft.au=Bertrand%2C+Alexander&rft.au=Moonen%2C+Marc&rft.date=2016-08-01&rft.pub=EURASIP&rft.eissn=2076-1465&rft.spage=2345&rft.epage=2349&rft_id=info:doi/10.1109%2FEUSIPCO.2016.7760668&rft.externalDocID=7760668