Understanding Travel Patterns of Tourists from Mobile Phone Data: A Case Study in Hainan
Large scale of locational data generated by mobile devices present an opportunity to change the structure of traditional research in tourism. However, tourist-focusing mobility patterns haven't been explored enough, which are tremendously useful for optimizing tourism resource allocation. To fu...
Saved in:
| Published in | International Conference on Big Data and Smart Computing pp. 45 - 51 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.01.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2375-9356 |
| DOI | 10.1109/BigComp.2018.00016 |
Cover
| Abstract | Large scale of locational data generated by mobile devices present an opportunity to change the structure of traditional research in tourism. However, tourist-focusing mobility patterns haven't been explored enough, which are tremendously useful for optimizing tourism resource allocation. To fulfill the need, we design a new analysis framework for understanding travel patterns of tourists by using the massive anonymous CDRs. The analysis framework consists of three layers that are data layer, algorithm layer and application layer. A new region-activity-time (RAT) pattern that captures the multi-dimensional mobility information of tourists is defined in the algorithm layer. The application layer shows the usability of algorithms in discovering hot regions and popular travel patterns, analyzing tourism seasonality effect as well as tourists' lodging preference. Our framework provides tourism experts with valuable information of tourist mobility and helps enhance tourism management. |
|---|---|
| AbstractList | Large scale of locational data generated by mobile devices present an opportunity to change the structure of traditional research in tourism. However, tourist-focusing mobility patterns haven't been explored enough, which are tremendously useful for optimizing tourism resource allocation. To fulfill the need, we design a new analysis framework for understanding travel patterns of tourists by using the massive anonymous CDRs. The analysis framework consists of three layers that are data layer, algorithm layer and application layer. A new region-activity-time (RAT) pattern that captures the multi-dimensional mobility information of tourists is defined in the algorithm layer. The application layer shows the usability of algorithms in discovering hot regions and popular travel patterns, analyzing tourism seasonality effect as well as tourists' lodging preference. Our framework provides tourism experts with valuable information of tourist mobility and helps enhance tourism management. |
| Author | Tang, Xiaosheng Hu, Zheng Chen, Qingqing Su, Hang Yu, Ke |
| Author_xml | – sequence: 1 givenname: Qingqing surname: Chen fullname: Chen, Qingqing – sequence: 2 givenname: Zheng surname: Hu fullname: Hu, Zheng – sequence: 3 givenname: Hang surname: Su fullname: Su, Hang – sequence: 4 givenname: Xiaosheng surname: Tang fullname: Tang, Xiaosheng – sequence: 5 givenname: Ke surname: Yu fullname: Yu, Ke |
| BookMark | eNotjstOAjEUQKvRREB-QDf9gcE-6MsdDiomGEmExB25M3MHa6BD2mLC34vR1dmcnJw-uQhdQEJuOBtxztzdg9-U3W4_EozbEWOM6zPS50paLfXYiXPSE9Kowkmlr8gwpa9fx2knDOuRj1VoMKYMofFhQ5cRvnFLF5AzxpBo19Jld4g-5UTb2O3oa1f5LdLF5-mBTiHDPZ3QEhLS93xojtQHOgMfIFyTyxa2CYf_HJDV0-OynBXzt-eXcjIvPDcqF61wqjKCaePqsdVjwxAF1E4ykMa1prWc12CtU02lNGAt2goYOi0lWl2BHJDbv65HxPU--h3E49pKbdhJ-gHp2lQe |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BigComp.2018.00016 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1538636492 9781538636497 |
| EISSN | 2375-9356 |
| EndPage | 51 |
| ExternalDocumentID | 8367096 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-f295b720679c486470ee2ac930a379f7f811ca8895db56aec2fba0e9633e86ba3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:50:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-f295b720679c486470ee2ac930a379f7f811ca8895db56aec2fba0e9633e86ba3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_8367096 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jan |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan |
| PublicationDecade | 2010 |
| PublicationTitle | International Conference on Big Data and Smart Computing |
| PublicationTitleAbbrev | BIGCOMP |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001969270 |
| Score | 1.6902758 |
| Snippet | Large scale of locational data generated by mobile devices present an opportunity to change the structure of traditional research in tourism. However,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 45 |
| SubjectTerms | Computer architecture Data mining Data models Mobile handsets mobile phone data Rats tourism management tourist mobility Trajectory trajectory data mining Urban areas |
| Title | Understanding Travel Patterns of Tourists from Mobile Phone Data: A Case Study in Hainan |
| URI | https://ieeexplore.ieee.org/document/8367096 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbNzCS1nnZMRsUqgqpqEMrdatsx4YKlFQ0HeDX40v6EmJgizL4Ilvnc87fg5Abq6lW7rfCY6kvvYhr4UnmK8_6GqVYfK5D5DsPX9hgEj1P42mN3G65MMaYEnxmOvhY3uWnuV5hq6yblGpjrE7qPGEVV2vXTxFMBJxueDFUdB_mr5hTCN9CvCRFS_M9B5WygPSbZLgJXeFG3jurQnX09y9Vxv9-2yFp76h6MNoWoSNSM9kxaW68GmCdui0yneyzWGCMrkMfMCrVNbMl5BYqPcFiCcg4gWGu3H4Bo7c8M_AoC3kH99BzJQ8QefgF8wwGSLzK2mTSfxr3Bt7aVcGbu6NC4dlAxIqjarvQUcIiTo0JpBYhlSEXltvE97VMEhGnKmbS6MAqSY1L1NAkTMnwhDQyF_uUAFN4jyelMYxHOKDUqRvGD0wcWKbpGWnhRM0WlXDGbD1H53-_viAHuFRVf-OSNIrPlblyFb9Q1-VS_wA1Tqxa |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbR6OHbNBoQrQVB1aqVtluzZUoATRdIBfjy_pS4iBLcrgi2ydzzl_D4SujHKVtL8VDp14wiFMcUdQTzrGUyDF4jEVAN856dF4SJ5G4aiCrldcGK11AT7TTXgs7vInmZpDq6wVFWpjdAtth4SQsGRrrTsqnHKfuUtmjMtbd9MXyCoAcAFi0gVT8w0PlaKEdGooWQYvkSNvzXkum-r7ly7jf79uDzXWZD3cX5WhfVTR6QGqLd0a8CJ562g03OSx4AH4Dr3jfqGvmc5wZnCpKJjPMHBOcJJJu2Pg_muWanwvcnGDb3HbFj0M2MMvPE1xDNSrtIGGnYdBO3YWvgrO1B4Wcsf4PJQMdNu5IhElzNXaF4oHrggYN8xEnqdEFPFwIkMqtPKNFK62qRroiEoRHKJqamMfIUwl3OQJoTVlBAYUamKH8Xwd-oYq9xjVYaLGH6V0xngxRyd_v75EO_Eg6Y67j73nU7QLy1Z2O85QNf-c63Nb_3N5USz7D2oBr6c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=Understanding+Travel+Patterns+of+Tourists+from+Mobile+Phone+Data%3A+A+Case+Study+in+Hainan&rft.au=Chen%2C+Qingqing&rft.au=Hu%2C+Zheng&rft.au=Su%2C+Hang&rft.au=Tang%2C+Xiaosheng&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=45&rft.epage=51&rft_id=info:doi/10.1109%2FBigComp.2018.00016&rft.externalDocID=8367096 |