Understanding Travel Patterns of Tourists from Mobile Phone Data: A Case Study in Hainan

Large scale of locational data generated by mobile devices present an opportunity to change the structure of traditional research in tourism. However, tourist-focusing mobility patterns haven't been explored enough, which are tremendously useful for optimizing tourism resource allocation. To fu...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Big Data and Smart Computing pp. 45 - 51
Main Authors Chen, Qingqing, Hu, Zheng, Su, Hang, Tang, Xiaosheng, Yu, Ke
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2018
Subjects
Online AccessGet full text
ISSN2375-9356
DOI10.1109/BigComp.2018.00016

Cover

Abstract Large scale of locational data generated by mobile devices present an opportunity to change the structure of traditional research in tourism. However, tourist-focusing mobility patterns haven't been explored enough, which are tremendously useful for optimizing tourism resource allocation. To fulfill the need, we design a new analysis framework for understanding travel patterns of tourists by using the massive anonymous CDRs. The analysis framework consists of three layers that are data layer, algorithm layer and application layer. A new region-activity-time (RAT) pattern that captures the multi-dimensional mobility information of tourists is defined in the algorithm layer. The application layer shows the usability of algorithms in discovering hot regions and popular travel patterns, analyzing tourism seasonality effect as well as tourists' lodging preference. Our framework provides tourism experts with valuable information of tourist mobility and helps enhance tourism management.
AbstractList Large scale of locational data generated by mobile devices present an opportunity to change the structure of traditional research in tourism. However, tourist-focusing mobility patterns haven't been explored enough, which are tremendously useful for optimizing tourism resource allocation. To fulfill the need, we design a new analysis framework for understanding travel patterns of tourists by using the massive anonymous CDRs. The analysis framework consists of three layers that are data layer, algorithm layer and application layer. A new region-activity-time (RAT) pattern that captures the multi-dimensional mobility information of tourists is defined in the algorithm layer. The application layer shows the usability of algorithms in discovering hot regions and popular travel patterns, analyzing tourism seasonality effect as well as tourists' lodging preference. Our framework provides tourism experts with valuable information of tourist mobility and helps enhance tourism management.
Author Tang, Xiaosheng
Hu, Zheng
Chen, Qingqing
Su, Hang
Yu, Ke
Author_xml – sequence: 1
  givenname: Qingqing
  surname: Chen
  fullname: Chen, Qingqing
– sequence: 2
  givenname: Zheng
  surname: Hu
  fullname: Hu, Zheng
– sequence: 3
  givenname: Hang
  surname: Su
  fullname: Su, Hang
– sequence: 4
  givenname: Xiaosheng
  surname: Tang
  fullname: Tang, Xiaosheng
– sequence: 5
  givenname: Ke
  surname: Yu
  fullname: Yu, Ke
BookMark eNotjstOAjEUQKvRREB-QDf9gcE-6MsdDiomGEmExB25M3MHa6BD2mLC34vR1dmcnJw-uQhdQEJuOBtxztzdg9-U3W4_EozbEWOM6zPS50paLfXYiXPSE9Kowkmlr8gwpa9fx2knDOuRj1VoMKYMofFhQ5cRvnFLF5AzxpBo19Jld4g-5UTb2O3oa1f5LdLF5-mBTiHDPZ3QEhLS93xojtQHOgMfIFyTyxa2CYf_HJDV0-OynBXzt-eXcjIvPDcqF61wqjKCaePqsdVjwxAF1E4ykMa1prWc12CtU02lNGAt2goYOi0lWl2BHJDbv65HxPU--h3E49pKbdhJ-gHp2lQe
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigComp.2018.00016
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1538636492
9781538636497
EISSN 2375-9356
EndPage 51
ExternalDocumentID 8367096
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-f295b720679c486470ee2ac930a379f7f811ca8895db56aec2fba0e9633e86ba3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f295b720679c486470ee2ac930a379f7f811ca8895db56aec2fba0e9633e86ba3
PageCount 7
ParticipantIDs ieee_primary_8367096
PublicationCentury 2000
PublicationDate 2018-Jan
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan
PublicationDecade 2010
PublicationTitle International Conference on Big Data and Smart Computing
PublicationTitleAbbrev BIGCOMP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001969270
Score 1.6902758
Snippet Large scale of locational data generated by mobile devices present an opportunity to change the structure of traditional research in tourism. However,...
SourceID ieee
SourceType Publisher
StartPage 45
SubjectTerms Computer architecture
Data mining
Data models
Mobile handsets
mobile phone data
Rats
tourism management
tourist mobility
Trajectory
trajectory data mining
Urban areas
Title Understanding Travel Patterns of Tourists from Mobile Phone Data: A Case Study in Hainan
URI https://ieeexplore.ieee.org/document/8367096
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbNzCS1nnZMRsUqgqpqEMrdatsx4YKlFQ0HeDX40v6EmJgizL4Ilvnc87fg5Abq6lW7rfCY6kvvYhr4UnmK8_6GqVYfK5D5DsPX9hgEj1P42mN3G65MMaYEnxmOvhY3uWnuV5hq6yblGpjrE7qPGEVV2vXTxFMBJxueDFUdB_mr5hTCN9CvCRFS_M9B5WygPSbZLgJXeFG3jurQnX09y9Vxv9-2yFp76h6MNoWoSNSM9kxaW68GmCdui0yneyzWGCMrkMfMCrVNbMl5BYqPcFiCcg4gWGu3H4Bo7c8M_AoC3kH99BzJQ8QefgF8wwGSLzK2mTSfxr3Bt7aVcGbu6NC4dlAxIqjarvQUcIiTo0JpBYhlSEXltvE97VMEhGnKmbS6MAqSY1L1NAkTMnwhDQyF_uUAFN4jyelMYxHOKDUqRvGD0wcWKbpGWnhRM0WlXDGbD1H53-_viAHuFRVf-OSNIrPlblyFb9Q1-VS_wA1Tqxa
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbR6OHbNBoQrQVB1aqVtluzZUoATRdIBfjy_pS4iBLcrgi2ydzzl_D4SujHKVtL8VDp14wiFMcUdQTzrGUyDF4jEVAN856dF4SJ5G4aiCrldcGK11AT7TTXgs7vInmZpDq6wVFWpjdAtth4SQsGRrrTsqnHKfuUtmjMtbd9MXyCoAcAFi0gVT8w0PlaKEdGooWQYvkSNvzXkum-r7ly7jf79uDzXWZD3cX5WhfVTR6QGqLd0a8CJ562g03OSx4AH4Dr3jfqGvmc5wZnCpKJjPMHBOcJJJu2Pg_muWanwvcnGDb3HbFj0M2MMvPE1xDNSrtIGGnYdBO3YWvgrO1B4Wcsf4PJQMdNu5IhElzNXaF4oHrggYN8xEnqdEFPFwIkMqtPKNFK62qRroiEoRHKJqamMfIUwl3OQJoTVlBAYUamKH8Xwd-oYq9xjVYaLGH6V0xngxRyd_v75EO_Eg6Y67j73nU7QLy1Z2O85QNf-c63Nb_3N5USz7D2oBr6c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=Understanding+Travel+Patterns+of+Tourists+from+Mobile+Phone+Data%3A+A+Case+Study+in+Hainan&rft.au=Chen%2C+Qingqing&rft.au=Hu%2C+Zheng&rft.au=Su%2C+Hang&rft.au=Tang%2C+Xiaosheng&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=45&rft.epage=51&rft_id=info:doi/10.1109%2FBigComp.2018.00016&rft.externalDocID=8367096