Recommending Pick-up Points for Taxi-drivers Based on Spatio-temporal Clustering

Using GPS trajectories to recommend pick-up points for taxi driver comes to be a promising approach of increasing profits and decreasing pollutions. In the existing methods, nearly all the GPS data of a city are computed for recommendation. However, it is time-consuming and not accurate enough owing...

Full description

Saved in:
Bibliographic Details
Published in2012 International Conference on Cloud and Green Computing pp. 67 - 72
Main Authors Mingyue Zhang, Jianxun Liu, Yizhi Liu, Zhenyang Hu, Liang Yi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2012
Subjects
Online AccessGet full text
ISBN1467330272
9781467330275
DOI10.1109/CGC.2012.34

Cover

Abstract Using GPS trajectories to recommend pick-up points for taxi driver comes to be a promising approach of increasing profits and decreasing pollutions. In the existing methods, nearly all the GPS data of a city are computed for recommendation. However, it is time-consuming and not accurate enough owing to too much spatio-temporal noise. Therefore, we propose a novel method of recommending pick-up for taxi driver based on spatio-temporal clustering. It is made up of data preprocessing and real-time recommendation. Firstly, we capture the historical pick-up points by analyzing their intervals. These points are clustered at different time and different regions to create candidate pick-up points. Secondly, after ranking the candidate pick-up points around the taxi, the top-5 valuable pick-up points are recommended for taxi drivers. The experimental results, whose data come from Microsoft Research Asia, show that our method can effectively recommend pick-up points for taxi drivers.
AbstractList Using GPS trajectories to recommend pick-up points for taxi driver comes to be a promising approach of increasing profits and decreasing pollutions. In the existing methods, nearly all the GPS data of a city are computed for recommendation. However, it is time-consuming and not accurate enough owing to too much spatio-temporal noise. Therefore, we propose a novel method of recommending pick-up for taxi driver based on spatio-temporal clustering. It is made up of data preprocessing and real-time recommendation. Firstly, we capture the historical pick-up points by analyzing their intervals. These points are clustered at different time and different regions to create candidate pick-up points. Secondly, after ranking the candidate pick-up points around the taxi, the top-5 valuable pick-up points are recommended for taxi drivers. The experimental results, whose data come from Microsoft Research Asia, show that our method can effectively recommend pick-up points for taxi drivers.
Author Liang Yi
Zhenyang Hu
Mingyue Zhang
Yizhi Liu
Jianxun Liu
Author_xml – sequence: 1
  surname: Mingyue Zhang
  fullname: Mingyue Zhang
  email: mydiscilpe278@gmail.com
  organization: Key Lab. of Knowledge Process. & Networked Manuf., Xiangtan, China
– sequence: 2
  surname: Jianxun Liu
  fullname: Jianxun Liu
  email: ljx529@gmail.com
  organization: Key Lab. of Knowledge Process. & Networked Manuf., Xiangtan, China
– sequence: 3
  surname: Yizhi Liu
  fullname: Yizhi Liu
  email: yizhi_liu@sina.com
  organization: Key Lab. of Knowledge Process. & Networked Manuf., Xiangtan, China
– sequence: 4
  surname: Zhenyang Hu
  fullname: Zhenyang Hu
  email: huzhenyang2010@163.com
  organization: Key Lab. of Knowledge Process. & Networked Manuf., Xiangtan, China
– sequence: 5
  surname: Liang Yi
  fullname: Liang Yi
  organization: Key Lab. of Knowledge Process. & Networked Manuf., Xiangtan, China
BookMark eNotj81KAzEYACMqaGtPHr3kBbZ--d8cdbFVKFi0nks2-SrR7mZJtqJvb0FPc5qBmZCzPvVIyDWDOWNgb5tlM-fA-FzIEzIBo62StZbylEyY1EYI4IZfkFkpHwBwVDQT_JKsX9CnrsM-xP6drqP_rA4DXafYj4XuUqYb9x2rkOMX5kLvXcFAU09fBzfGVI3YDSm7PW32hzJiPjauyPnO7QvO_jklb4uHTfNYrZ6XT83dqorMqLFC3zphnGxDcCF4UB6ACxNsjUpYVus21AJAMeGPE0oJxxXsuHUKfCt1EFNy89eNiLgdcuxc_tlqUXNjrfgFBkBPwA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CGC.2012.34
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 0769548644
9780769548647
EndPage 72
ExternalDocumentID 6382799
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-ecba37a4bddaddc05c00237d98e539186bd8300513c644553a250f29a50cb46d3
IEDL.DBID RIE
ISBN 1467330272
9781467330275
IngestDate Wed Aug 27 03:42:07 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-ecba37a4bddaddc05c00237d98e539186bd8300513c644553a250f29a50cb46d3
PageCount 6
ParticipantIDs ieee_primary_6382799
PublicationCentury 2000
PublicationDate 2012-Nov.
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-Nov.
PublicationDecade 2010
PublicationTitle 2012 International Conference on Cloud and Green Computing
PublicationTitleAbbrev cgc
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106132
Score 1.6021013
Snippet Using GPS trajectories to recommend pick-up points for taxi driver comes to be a promising approach of increasing profits and decreasing pollutions. In the...
SourceID ieee
SourceType Publisher
StartPage 67
SubjectTerms Asia
Clustering algorithms
Data preprocessing
Global Positioning System
GPS trajectories analyses
Hierarchical clustering
Real-time systems
Recommendation Pick-up points
Spatio-temporal clustering
Trajectory
Vehicles
Title Recommending Pick-up Points for Taxi-drivers Based on Spatio-temporal Clustering
URI https://ieeexplore.ieee.org/document/6382799
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UnPibHDyark2atL1anEOYFNxgt5FfhbLZjtmC-NebpN0m4sFbG0gISXjvJe_7vgfAvUg404ngSBLmo1Dmxg7mPkeKYqqEjnHkEu3TVzaZhy8LuuiBhz0XRmvtwGfas58ul68q2dinspE5K6Zv0gf9KGYtV-vwnmLvNgQ77haLiE3H4Z2kU_dPO35e4Cej9Dm1uC7s2YrJP-qqOLcyPgbT3YRaNMnKa2rhya9fWo3_nfEJGB4IfDDbu6ZT0NPlGcjsVfPddLBtMCvkCjUbmFVFWX9AE7vCGf8skNo6pAZ8NO5NwaqEbw5zjToNqzVM140VVzBjDMF8_DRLJ6grqIAKEyXUSEvBScRDoZQxa9Kn0rrsSCWxpiQJYiZUbOXrAyJNmEQp4SZAynHCqS9FyBQ5B4OyKvUFgMZQBiSQCQ_NeIwqLoKICeyzPM4x5_wSnNnVWG5azYxltxBXfzdfgyO7GS3H7wYM6m2jb42zr8Wd2-VveaKmjQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zHvSksom_zcGj6dqmSdurxTl1GwU32G3kV6FstmO2IP71Jm23iXjw1gYSQhLee8n7vu8BcMdDRlXIGRKY2sgTibaDic2QJC6RXAWuXyXaR2M6mHovMzJrgfstF0YpVYHPlGU-q1y-zEVpnsp6-qzovuEe2Cee55GarbV7UTG3G-xW7C3qY5OQczeiTs0_aRh6jh32oqfIILtcy9RM_lFZpXIs_SMw2kypxpMsrLLglvj6pdb43zkfg-6OwgfjrXM6AS2VdUBsLpvvuoNpg3EqFqhcwThPs-ID6ugVTthniuS6wmrAB-3gJMwz-FahrlGjYrWE0bI08gp6jC6Y9h8n0QA1JRVQquOEAinBGfaZx6XUhk3YRBin7cswUASHTkC5DIyAvYOFDpQIwUyHSIkbMmIL7lGJT0E7yzN1BqA2lQ52RMg8PR4lknHHp9y1aRIkLmPsHHTMasxXtWrGvFmIi7-bb8HBYDIazofP49dLcGg2pmb8XYF2sS7VtXb9Bb-pdvwbZ46p2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+International+Conference+on+Cloud+and+Green+Computing&rft.atitle=Recommending+Pick-up+Points+for+Taxi-drivers+Based+on+Spatio-temporal+Clustering&rft.au=Mingyue+Zhang&rft.au=Jianxun+Liu&rft.au=Yizhi+Liu&rft.au=Zhenyang+Hu&rft.date=2012-11-01&rft.pub=IEEE&rft.isbn=9781467330275&rft.spage=67&rft.epage=72&rft_id=info:doi/10.1109%2FCGC.2012.34&rft.externalDocID=6382799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467330275/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467330275/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467330275/sc.gif&client=summon&freeimage=true