An orthonormalized basis function algorithm based on wavelet analysis for Magnetic Anomaly Detection
This Magnetic Anomaly Detection (MAD) technology is widely used in various fields in recent years. The focus of most researches is how to improve the signal recognition rate and reduce the false alarm rate. This paper presents an improved Orthonormalized Basis Function (OBF) algorithm for MAD in non...
        Saved in:
      
    
          | Published in | 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP BMEI) pp. 1 - 5 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.10.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/CISP-BMEI.2017.8302086 | 
Cover
| Abstract | This Magnetic Anomaly Detection (MAD) technology is widely used in various fields in recent years. The focus of most researches is how to improve the signal recognition rate and reduce the false alarm rate. This paper presents an improved Orthonormalized Basis Function (OBF) algorithm for MAD in non-Gaussian noise background. In this algorithm, the raw signal is first decomposed by the wavelet. Then several layers of the decomposed signal with target characteristics are picked out as the reconstructed signal. Finally the magnetic target is recognized by the OBF algorithm. The experimental results show that the noise of the signal can be suppressed to a certain extent and the SNR is improved. Compared with the traditional OBF algorithm, the wavelet analysis based OBF algorithm can detect the target signal accurately and reduce the waste of resources caused by the false alarms. | 
    
|---|---|
| AbstractList | This Magnetic Anomaly Detection (MAD) technology is widely used in various fields in recent years. The focus of most researches is how to improve the signal recognition rate and reduce the false alarm rate. This paper presents an improved Orthonormalized Basis Function (OBF) algorithm for MAD in non-Gaussian noise background. In this algorithm, the raw signal is first decomposed by the wavelet. Then several layers of the decomposed signal with target characteristics are picked out as the reconstructed signal. Finally the magnetic target is recognized by the OBF algorithm. The experimental results show that the noise of the signal can be suppressed to a certain extent and the SNR is improved. Compared with the traditional OBF algorithm, the wavelet analysis based OBF algorithm can detect the target signal accurately and reduce the waste of resources caused by the false alarms. | 
    
| Author | Liu, Hongying Li, Qingli Sun, Li Zhou, Mei Zheng, Xin Xu, Qingfeng Qiu, Song  | 
    
| Author_xml | – sequence: 1 givenname: Xin surname: Zheng fullname: Zheng, Xin organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241, China – sequence: 2 givenname: Qingfeng surname: Xu fullname: Xu, Qingfeng organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241, China – sequence: 3 givenname: Mei surname: Zhou fullname: Zhou, Mei organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241, China – sequence: 4 givenname: Hongying surname: Liu fullname: Liu, Hongying organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241, China – sequence: 5 givenname: Song surname: Qiu fullname: Qiu, Song organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241, China – sequence: 6 givenname: Li surname: Sun fullname: Sun, Li organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241, China – sequence: 7 givenname: Qingli surname: Li fullname: Li, Qingli organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241, China  | 
    
| BookMark | eNotkN1KwzAcxSMoqLNPIEheoDNplq_LWjctbCio1yNt_9kibSJtVOrTW-euDpxz-ME5l-jUBw8I3VAyp5To26J8eU7vNstynhEq54qRjChxghItFeVMCaqZlOcoGYZ3QkiWCc24vkBN7nHo4z740HemdT_Q4MoMbsD209fRBY9Nuwu9i_vuL5jiyfo2X9BCxMabdjyUQ483ZuchuhrnPkyoEd9DhAPiCp1Z0w6QHHWG3lbL1-IxXT89lEW-Th2VPKbALFNEg7UgiAK5oJVQWk47SMPNAoRRXGbWVpSClbWRWvCKcVVpmdEaOJuh63-uA4DtR-8604_b4xfsF7XyWVU | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/CISP-BMEI.2017.8302086 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISBN | 9781538619377 1538619377  | 
    
| EndPage | 5 | 
    
| ExternalDocumentID | 8302086 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i175t-e3f3809effe608e741b68970860d5a4e6a8572ffb11ef7ca7965b358b9721ce53 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:52:30 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i175t-e3f3809effe608e741b68970860d5a4e6a8572ffb11ef7ca7965b358b9721ce53 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_8302086 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-Oct. | 
    
| PublicationDateYYYYMMDD | 2017-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP BMEI) | 
    
| PublicationTitleAbbrev | CISP-BMEI | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0002269359 | 
    
| Score | 1.6919729 | 
    
| Snippet | This Magnetic Anomaly Detection (MAD) technology is widely used in various fields in recent years. The focus of most researches is how to improve the signal... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Approximation algorithms magnetic anomaly detection Magnetic fields Magnetometers Multiresolution analysis orthonormalized basis function Signal processing algorithms Signal to noise ratio wavelet analysis  | 
    
| Title | An orthonormalized basis function algorithm based on wavelet analysis for Magnetic Anomaly Detection | 
    
| URI | https://ieeexplore.ieee.org/document/8302086 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyf8gfF3evDoxrZu63pEhIAJhkRJuJF2e0MidgZGjPz19m0To_HgbelLt6UvzfvSft_3CLn2PT8WcWo2UoqSHIjBEhxdRIXrg8f8AGRBkH0IBxP_fhpMa-Rmp4UBgIJ8BjY-Fnf5SRZv8KisjV5VBoLXSZ1HYanV2p2nGBiBItNKBOw6ot0dPo6t21FviAQubleTf3RRKYpIv0lGX58vuSMv9iZXdrz95cz43__bJ61vuR4d7wrRAamBPiTNCl_Saveuj0jS0RSvaTKNQHW52JqoqWKLNcXqhhmicjnPVov8-RUDJmyG3iX2psiprOxLqIG5dCTnGuWPtKMz86oPegd5QerSLTLp9566A6vqsmAtDHTILWApixyB9JHQicAgDBVGmK_QSQLpQyijgHtpqlwXUh5LLsJAsSBS6PsTQ8COSUNnGk4IZUJJj0kPlJB-hNiQJRxAccm5dFl0So5w0WZvpZHGrFqvs7-Hz8keJq5kzl2QRr7awKVBALm6KlL_Cfz-shY | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_DogK3tuh0RIaBASISEG2nHGxJxMzBi5K-3b0yMxoO3pS9bmr4170v7fd8j5IY7PPCD0GykECU5EIDlS3QR9W0ODuMCVEqQ7bmtIX8YiVGO3G61MACQks-gjI_pXf4kDlZ4VFZBryoDwXfIruCci41aa3uiYoAEykwzGbBd9Sv19lPfuus22kjhkuXs9R99VNIy0iyQ7tcENuyRl_Iq0eVg_cub8b8zPCClb8Ee7W9L0SHJQXREChnCpNn-XRbJpBZRvKiJI4Sq89naRE0dmy0p1jfMEVXzabyYJc-vGDBhM_SusDtFQlVmYEIN0KVdNY1QAElrUWw-9UHvIUlpXVGJDJuNQb1lZX0WrJkBD4kFLGRe1UcCiVv1wGAM7XqYMbc6EYqDqzwhnTDUtg2hDJT0XaGZ8DQ6_wQg2DHJR3EEJ4QyXyuHKQe0r7iH6JBNJICWSkplM--UFHHRxm8bK41xtl5nfw9fk73WoNsZd9q9x3Oyj0nc8OguSD5ZrODS4IFEX6W_wSd7zLVj | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+10th+International+Congress+on+Image+and+Signal+Processing%2C+BioMedical+Engineering+and+Informatics+%28CISP+BMEI%29&rft.atitle=An+orthonormalized+basis+function+algorithm+based+on+wavelet+analysis+for+Magnetic+Anomaly+Detection&rft.au=Zheng%2C+Xin&rft.au=Xu%2C+Qingfeng&rft.au=Zhou%2C+Mei&rft.au=Liu%2C+Hongying&rft.date=2017-10-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FCISP-BMEI.2017.8302086&rft.externalDocID=8302086 |