Active skeleton for non-rigid object detection

We present a shape-based algorithm for detecting and recognizing non-rigid objects from natural images. The existing literature in this domain often cannot model the objects very well. In this paper, we use the skeleton (medial axis) information to capture the main structure of an object, which has...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE 12th International Conference on Computer Vision pp. 575 - 582
Main Authors Xiang Bai, Xinggang Wang, Latecki, Longin Jan, Wenyu Liu, Zhuowen Tu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2009
Subjects
Online AccessGet full text
ISBN9781424444205
1424444209
ISSN1550-5499
DOI10.1109/ICCV.2009.5459188

Cover

Abstract We present a shape-based algorithm for detecting and recognizing non-rigid objects from natural images. The existing literature in this domain often cannot model the objects very well. In this paper, we use the skeleton (medial axis) information to capture the main structure of an object, which has the particular advantage in modeling articulation and non-rigid deformation. Given a set of training samples, a tree-union structure is learned on the extracted skeletons to model the variation in configuration. Each branch on the skeleton is associated with a few part-based templates, modeling the object boundary information. We then apply sum-and-max algorithm to perform rapid object detection by matching the skeleton-based active template to the edge map extracted from a test image. The algorithm reports the detection result by a composition of the local maximum responses. Compared with the alternatives on this topic, our algorithm requires less training samples. It is simple, yet efficient and effective. We show encouraging results on two widely used benchmark image sets: the Weizmann horse dataset [7] and the ETHZ dataset [16].
AbstractList We present a shape-based algorithm for detecting and recognizing non-rigid objects from natural images. The existing literature in this domain often cannot model the objects very well. In this paper, we use the skeleton (medial axis) information to capture the main structure of an object, which has the particular advantage in modeling articulation and non-rigid deformation. Given a set of training samples, a tree-union structure is learned on the extracted skeletons to model the variation in configuration. Each branch on the skeleton is associated with a few part-based templates, modeling the object boundary information. We then apply sum-and-max algorithm to perform rapid object detection by matching the skeleton-based active template to the edge map extracted from a test image. The algorithm reports the detection result by a composition of the local maximum responses. Compared with the alternatives on this topic, our algorithm requires less training samples. It is simple, yet efficient and effective. We show encouraging results on two widely used benchmark image sets: the Weizmann horse dataset [7] and the ETHZ dataset [16].
Author Xinggang Wang
Wenyu Liu
Latecki, Longin Jan
Xiang Bai
Zhuowen Tu
Author_xml – sequence: 1
  surname: Xiang Bai
  fullname: Xiang Bai
  email: xbai@hust.edu.cn
  organization: Huazhong Univ. of Sci. & Tech., Wuhan, China
– sequence: 2
  surname: Xinggang Wang
  fullname: Xinggang Wang
  email: wxghust@graai1.com
  organization: Huazhong Univ. of Sci. & Tech., Wuhan, China
– sequence: 3
  givenname: Longin Jan
  surname: Latecki
  fullname: Latecki, Longin Jan
  email: latecki@temple.edu
  organization: Temple Univ., Temple, TX, USA
– sequence: 4
  surname: Wenyu Liu
  fullname: Wenyu Liu
  email: liuwy@hust.edu.cn
  organization: Huazhong Univ. of Sci. & Tech., Wuhan, China
– sequence: 5
  surname: Zhuowen Tu
  fullname: Zhuowen Tu
  email: ztu@loni.ucla.edu
  organization: Univ. of California, Los Angeles, CA, USA
BookMark eNotj8tKw0AUho9Ywab2AcRNXiDxnJk5mZllCV4KBTfqtuRyRqbWRJIg-PYGzL_5-Df_JYFV13cCcEuYE6G_35fle64Qfc6GPTl3AQkZZWaR50vYeusWr5BXsCZmzNh4fw3JOJ4QtVeuWEO-a6b4I-n4KWeZ-i4N_ZDOZdkQP2Kb9vVJmiltZZoR--4GrkJ1HmW7cANvjw-v5XN2eHnal7tDFsnylIlqZV4n3IRATRGKqgishILFYGtlG--8QhPqguvA2ljdGoveWuWoriqtN3D3nxtF5Pg9xK9q-D0uX_UfD19Gtg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV.2009.5459188
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1424444195
9781424444199
EndPage 582
ExternalDocumentID 5459188
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-e2de200e5cff1c6f6a6f52e1f70f7b27c989204fb65bf53473d470977281baa33
IEDL.DBID RIE
ISBN 9781424444205
1424444209
ISSN 1550-5499
IngestDate Wed Aug 27 03:13:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-e2de200e5cff1c6f6a6f52e1f70f7b27c989204fb65bf53473d470977281baa33
PageCount 8
ParticipantIDs ieee_primary_5459188
PublicationCentury 2000
PublicationDate 2009-Sept.
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-Sept.
PublicationDecade 2000
PublicationTitle 2009 IEEE 12th International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
ssj0000453409
Score 2.1210392
Snippet We present a shape-based algorithm for detecting and recognizing non-rigid objects from natural images. The existing literature in this domain often cannot...
SourceID ieee
SourceType Publisher
StartPage 575
SubjectTerms Automation
Educational institutions
Information science
Layout
Least squares approximation
Least squares methods
Light sources
Lighting
Object detection
Skeleton
Title Active skeleton for non-rigid object detection
URI https://ieeexplore.ieee.org/document/5459188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkwFWsS3PDDiNHEcOx5RRVWQihgo6lblkrOEKqWIpgu_nnOSFoEY2JIsziWK38vdvXeM3VgDWQgFCMhiKVQiQVjrIpFkFpEIQ2qVFzjPnvR0rh4XyaLDbvdaGESsm88w8Id1Lb9Y51ufKhsR2tsoTbusa1LdaLX2-RSiJrHyVlTNLkywX0959Axc-H-gnahLKRnanddTe5605c4otKOH8fi1sbFsV_sxdqVGnUmfzXb32zSbrIJtBUH--cvK8b8BHbLht76PP--R64h1sDxm_ZaQ8vZz3wxYcFfvhnyzInAiksiJ4fJyXQo_Tavga_BJHF5gVfdzlUM2n9y_jKeiHbAg3og1VAJlgRQqJrlzUa6dzrRLJEbOhM6ANLlNrQyVA52Ao8dr4kKZkBijJLKbZXF8wnq0KJ4yTkygCIlKpd6exrnUOlAKTJ4BgkWpz9jAh798bzw0lm3k539fvmAHTdXG93Jdsl71scUrAv8Kruu3_gWSVqZc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NT4NAEIYntR70VLU1fsvBo0th2QX2aBqbVtvGQ2t6a1iYTUwTaiy9-OudBVqj8eANuCxDYOdhPt4BuFORTjydaaaTgDMhuWZKGZ_JRCESMMRK2Abn8SQczMTTXM4bcL_rhUHEsvgMXXtY5vKzVbqxobIueXvlx_Ee7EshhKy6tXYRFYKTQFgxqmofJsdfznm0DM7sX9C2rUsI7qmt2lN9LuuEp--p7rDXe62ELOv1fgxeKf1OvwXj7R1X5SZLd1NoN_38Jeb4X5OOoPPd4ee87HzXMTQwP4FWjaRO_cGv2-A-lPuhs16SeyJMdIhxnXyVMztPK3NW2oZxnAyLsqIr78Cs_zjtDVg9YoG9ETcUDHmGZCrK1Bg_DU2YhEZy9E3kmUjzKFWx4p4wOpTa0OONgkxEHjEjJ9xNkiA4hSYtimfgEAtkHsFUbAVqjImV0ULoKE00aoU8PIe2NX_xXqloLGrLL_6-fAsHg-l4tBgNJ8-XcFjlcGxl1xU0i48NXhMKFPqmfAO-AIMgqak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+12th+International+Conference+on+Computer+Vision&rft.atitle=Active+skeleton+for+non-rigid+object+detection&rft.au=Xiang+Bai&rft.au=Xinggang+Wang&rft.au=Latecki%2C+Longin+Jan&rft.au=Wenyu+Liu&rft.date=2009-09-01&rft.pub=IEEE&rft.isbn=9781424444205&rft.issn=1550-5499&rft.spage=575&rft.epage=582&rft_id=info:doi/10.1109%2FICCV.2009.5459188&rft.externalDocID=5459188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon