Active skeleton for non-rigid object detection
We present a shape-based algorithm for detecting and recognizing non-rigid objects from natural images. The existing literature in this domain often cannot model the objects very well. In this paper, we use the skeleton (medial axis) information to capture the main structure of an object, which has...
Saved in:
| Published in | 2009 IEEE 12th International Conference on Computer Vision pp. 575 - 582 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.09.2009
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781424444205 1424444209 |
| ISSN | 1550-5499 |
| DOI | 10.1109/ICCV.2009.5459188 |
Cover
| Abstract | We present a shape-based algorithm for detecting and recognizing non-rigid objects from natural images. The existing literature in this domain often cannot model the objects very well. In this paper, we use the skeleton (medial axis) information to capture the main structure of an object, which has the particular advantage in modeling articulation and non-rigid deformation. Given a set of training samples, a tree-union structure is learned on the extracted skeletons to model the variation in configuration. Each branch on the skeleton is associated with a few part-based templates, modeling the object boundary information. We then apply sum-and-max algorithm to perform rapid object detection by matching the skeleton-based active template to the edge map extracted from a test image. The algorithm reports the detection result by a composition of the local maximum responses. Compared with the alternatives on this topic, our algorithm requires less training samples. It is simple, yet efficient and effective. We show encouraging results on two widely used benchmark image sets: the Weizmann horse dataset [7] and the ETHZ dataset [16]. |
|---|---|
| AbstractList | We present a shape-based algorithm for detecting and recognizing non-rigid objects from natural images. The existing literature in this domain often cannot model the objects very well. In this paper, we use the skeleton (medial axis) information to capture the main structure of an object, which has the particular advantage in modeling articulation and non-rigid deformation. Given a set of training samples, a tree-union structure is learned on the extracted skeletons to model the variation in configuration. Each branch on the skeleton is associated with a few part-based templates, modeling the object boundary information. We then apply sum-and-max algorithm to perform rapid object detection by matching the skeleton-based active template to the edge map extracted from a test image. The algorithm reports the detection result by a composition of the local maximum responses. Compared with the alternatives on this topic, our algorithm requires less training samples. It is simple, yet efficient and effective. We show encouraging results on two widely used benchmark image sets: the Weizmann horse dataset [7] and the ETHZ dataset [16]. |
| Author | Xinggang Wang Wenyu Liu Latecki, Longin Jan Xiang Bai Zhuowen Tu |
| Author_xml | – sequence: 1 surname: Xiang Bai fullname: Xiang Bai email: xbai@hust.edu.cn organization: Huazhong Univ. of Sci. & Tech., Wuhan, China – sequence: 2 surname: Xinggang Wang fullname: Xinggang Wang email: wxghust@graai1.com organization: Huazhong Univ. of Sci. & Tech., Wuhan, China – sequence: 3 givenname: Longin Jan surname: Latecki fullname: Latecki, Longin Jan email: latecki@temple.edu organization: Temple Univ., Temple, TX, USA – sequence: 4 surname: Wenyu Liu fullname: Wenyu Liu email: liuwy@hust.edu.cn organization: Huazhong Univ. of Sci. & Tech., Wuhan, China – sequence: 5 surname: Zhuowen Tu fullname: Zhuowen Tu email: ztu@loni.ucla.edu organization: Univ. of California, Los Angeles, CA, USA |
| BookMark | eNotj8tKw0AUho9Ywab2AcRNXiDxnJk5mZllCV4KBTfqtuRyRqbWRJIg-PYGzL_5-Df_JYFV13cCcEuYE6G_35fle64Qfc6GPTl3AQkZZWaR50vYeusWr5BXsCZmzNh4fw3JOJ4QtVeuWEO-a6b4I-n4KWeZ-i4N_ZDOZdkQP2Kb9vVJmiltZZoR--4GrkJ1HmW7cANvjw-v5XN2eHnal7tDFsnylIlqZV4n3IRATRGKqgishILFYGtlG--8QhPqguvA2ljdGoveWuWoriqtN3D3nxtF5Pg9xK9q-D0uX_UfD19Gtg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICCV.2009.5459188 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1424444195 9781424444199 |
| EndPage | 582 |
| ExternalDocumentID | 5459188 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-e2de200e5cff1c6f6a6f52e1f70f7b27c989204fb65bf53473d470977281baa33 |
| IEDL.DBID | RIE |
| ISBN | 9781424444205 1424444209 |
| ISSN | 1550-5499 |
| IngestDate | Wed Aug 27 03:13:48 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-e2de200e5cff1c6f6a6f52e1f70f7b27c989204fb65bf53473d470977281baa33 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_5459188 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-Sept. |
| PublicationDateYYYYMMDD | 2009-09-01 |
| PublicationDate_xml | – month: 09 year: 2009 text: 2009-Sept. |
| PublicationDecade | 2000 |
| PublicationTitle | 2009 IEEE 12th International Conference on Computer Vision |
| PublicationTitleAbbrev | ICCV |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039286 ssj0000453409 |
| Score | 2.1210392 |
| Snippet | We present a shape-based algorithm for detecting and recognizing non-rigid objects from natural images. The existing literature in this domain often cannot... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 575 |
| SubjectTerms | Automation Educational institutions Information science Layout Least squares approximation Least squares methods Light sources Lighting Object detection Skeleton |
| Title | Active skeleton for non-rigid object detection |
| URI | https://ieeexplore.ieee.org/document/5459188 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkwFWsS3PDDiNHEcOx5RRVWQihgo6lblkrOEKqWIpgu_nnOSFoEY2JIsziWK38vdvXeM3VgDWQgFCMhiKVQiQVjrIpFkFpEIQ2qVFzjPnvR0rh4XyaLDbvdaGESsm88w8Id1Lb9Y51ufKhsR2tsoTbusa1LdaLX2-RSiJrHyVlTNLkywX0959Axc-H-gnahLKRnanddTe5605c4otKOH8fi1sbFsV_sxdqVGnUmfzXb32zSbrIJtBUH--cvK8b8BHbLht76PP--R64h1sDxm_ZaQ8vZz3wxYcFfvhnyzInAiksiJ4fJyXQo_Tavga_BJHF5gVfdzlUM2n9y_jKeiHbAg3og1VAJlgRQqJrlzUa6dzrRLJEbOhM6ANLlNrQyVA52Ao8dr4kKZkBijJLKbZXF8wnq0KJ4yTkygCIlKpd6exrnUOlAKTJ4BgkWpz9jAh798bzw0lm3k539fvmAHTdXG93Jdsl71scUrAv8Kruu3_gWSVqZc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NT4NAEIYntR70VLU1fsvBo0th2QX2aBqbVtvGQ2t6a1iYTUwTaiy9-OudBVqj8eANuCxDYOdhPt4BuFORTjydaaaTgDMhuWZKGZ_JRCESMMRK2Abn8SQczMTTXM4bcL_rhUHEsvgMXXtY5vKzVbqxobIueXvlx_Ee7EshhKy6tXYRFYKTQFgxqmofJsdfznm0DM7sX9C2rUsI7qmt2lN9LuuEp--p7rDXe62ELOv1fgxeKf1OvwXj7R1X5SZLd1NoN_38Jeb4X5OOoPPd4ee87HzXMTQwP4FWjaRO_cGv2-A-lPuhs16SeyJMdIhxnXyVMztPK3NW2oZxnAyLsqIr78Cs_zjtDVg9YoG9ETcUDHmGZCrK1Bg_DU2YhEZy9E3kmUjzKFWx4p4wOpTa0OONgkxEHjEjJ9xNkiA4hSYtimfgEAtkHsFUbAVqjImV0ULoKE00aoU8PIe2NX_xXqloLGrLL_6-fAsHg-l4tBgNJ8-XcFjlcGxl1xU0i48NXhMKFPqmfAO-AIMgqak |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+12th+International+Conference+on+Computer+Vision&rft.atitle=Active+skeleton+for+non-rigid+object+detection&rft.au=Xiang+Bai&rft.au=Xinggang+Wang&rft.au=Latecki%2C+Longin+Jan&rft.au=Wenyu+Liu&rft.date=2009-09-01&rft.pub=IEEE&rft.isbn=9781424444205&rft.issn=1550-5499&rft.spage=575&rft.epage=582&rft_id=info:doi/10.1109%2FICCV.2009.5459188&rft.externalDocID=5459188 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon |