Unsupervised Decomposition of Mixed Pixels Using the Maximum Entropy Principle

Due to the wide existence of mixed pixels, the derivation of constituent components (endmembers) and their proportions (abundances) at subpixel scales has become an important research topic. In this paper, we propose a novel unsupervised decomposition method based on the classical maximum entropy pr...

Full description

Saved in:
Bibliographic Details
Published in18th International Conference on Pattern Recognition (ICPR'06) Vol. 1; pp. 1067 - 1070
Main Authors Lidan Miao, Hairong Qi, Szu, H.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2006
Subjects
Online AccessGet full text
ISBN0769525210
9780769525211
ISSN1051-4651
DOI10.1109/ICPR.2006.1142

Cover

Abstract Due to the wide existence of mixed pixels, the derivation of constituent components (endmembers) and their proportions (abundances) at subpixel scales has become an important research topic. In this paper, we propose a novel unsupervised decomposition method based on the classical maximum entropy principle, termed uMaxEnt. The algorithm integrates a global least square error-based endmember detection and a per-pixel maximum entropy learning to find the most possible proportions. We apply the proposed method to the subject of spectral unmixing. The experimental results obtained from both simulated and real hyper-spectral data demonstrate the effectiveness of the uMaxEnt method
AbstractList Due to the wide existence of mixed pixels, the derivation of constituent components (endmembers) and their proportions (abundances) at subpixel scales has become an important research topic. In this paper, we propose a novel unsupervised decomposition method based on the classical maximum entropy principle, termed uMaxEnt. The algorithm integrates a global least square error-based endmember detection and a per-pixel maximum entropy learning to find the most possible proportions. We apply the proposed method to the subject of spectral unmixing. The experimental results obtained from both simulated and real hyper-spectral data demonstrate the effectiveness of the uMaxEnt method
Author Szu, H.
Hairong Qi
Lidan Miao
Author_xml – sequence: 1
  surname: Lidan Miao
  fullname: Lidan Miao
  organization: Tennessee Univ., Knoxville, TN
– sequence: 2
  surname: Hairong Qi
  fullname: Hairong Qi
  organization: Tennessee Univ., Knoxville, TN
– sequence: 3
  givenname: H.
  surname: Szu
  fullname: Szu, H.
BookMark eNotjMFOwzAQRC1RJNrSKxcu_oGU9TpO4iMKpVRqoUL0XNnJBowSJ4pT1P49kWAO8zTvMDM28a0nxu4ELIUA_bDJ9-9LBEjGGeMVm0GaaIUKBUzYVIASUZwoccMWIXzDmFipGPWUvR58OHXU_7hAJX-iom26NrjBtZ63Fd-586j3Y9eBH4Lzn3z4Ir4zZ9ecGr7yQ992F77vnS9cV9Mtu65MHWjxzzk7PK8-8pdo-7be5I_byIlUDREBVmAzgSqtjBClKazWJBNVWjQlSm1tBlmsMgJT6lgSQJkhWllUWqJFOWf3f7-OiI5d7xrTX44i0RpSKX8BPDxQJw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR.2006.1142
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 1070
ExternalDocumentID 1699073
Genre orig-research
GroupedDBID 29J
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-e02f0b81257fa11dacb99e365db2ad239bb808458e0ad943e00d822b3cf932b23
IEDL.DBID RIE
ISBN 0769525210
9780769525211
ISSN 1051-4651
IngestDate Wed Aug 27 01:40:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-e02f0b81257fa11dacb99e365db2ad239bb808458e0ad943e00d822b3cf932b23
PageCount 4
ParticipantIDs ieee_primary_1699073
PublicationCentury 2000
PublicationDate 20060000
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – year: 2006
  text: 20060000
PublicationDecade 2000
PublicationTitle 18th International Conference on Pattern Recognition (ICPR'06)
PublicationTitleAbbrev ICPR
PublicationYear 2006
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000455429
ssj0020358
Score 1.6322105
Snippet Due to the wide existence of mixed pixels, the derivation of constituent components (endmembers) and their proportions (abundances) at subpixel scales has...
SourceID ieee
SourceType Publisher
StartPage 1067
SubjectTerms Area measurement
Entropy
Hyperspectral imaging
Hyperspectral sensors
Image analysis
Least squares methods
Matrix decomposition
Pixel
Remote sensing
Spatial resolution
Title Unsupervised Decomposition of Mixed Pixels Using the Maximum Entropy Principle
URI https://ieeexplore.ieee.org/document/1699073
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ak15QwPg7PXh0sK3ttp4RgiYQYiThRvrWLiHKILIl6F_v2w-GGg9elrWXbk3b973X732PkDsJnuKOAgv8ACwe4pYKPC6tyBfK8Q3XbpirfU680Yw_zcW8Ru6rXBhjTE4-M93sNb_L1-swzUJlPcfDs9NndVL3fVnkalXxFIQmWemlytmymSjS4AT6SJ5wCpddChftVan1VLWdUs3RsWXvsT99Lu4osizTHzVXcpMzbJLx_mMLpslrN02gG37-0nH879-ckM4huY9OK7N1SmombpHmvroDLTd7ixx_kypsk8ks3qab7GDZGk0fTEZFL_ledB3R8XKH3VN8vm1pTkOgiCzpWO2Wq3RFBxkffvOB45ah_Q6ZDQcv_ZFV1mKwlggwEsvYbmQDogHhR8pxtApBSsM8ocFV2mUSILADLgJjKy05M7atEXsACyNEiOCyM9KI17E5JxRCF1cImkHwgDNulA8BM2HAXR1wbF6QdjZZi00ht7Eo5-ny7-4rcnSIilyTRvKemhvECQnc5gvkC55TtoQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYAFaEG88cBIShLbecylqEBbVaiV2Cpf7EgVNK1oIwG_nsuj4SEGlij24sSyfd-dv_sO4DJETwlHoYV-gJaIaEsFngit2JfK8Y3QbpSrffa9zkjcP8mnNbiqcmGMMTn5zDSz1_wuX8-iNAuVXTsenZ0-X4cNSV6FX2RrVREVAidZ8aXK3bK5LBLhJHlJnnQKpz2ULlmsUu2pajulnqNjh9d3rcFjcUuR5Zn-qLqSG53bHeitPrfgmjw30yU2o49fSo7__Z9d2P9K72ODynDtwZpJ6rCzqu_Ayu1eh-1vYoUN6I-SRTrPjpaF0ezGZGT0kvHFZjHrTd6oe0DPlwXLiQiMsCXrqbfJNJ2ydsaIn7_TuGVwfx9Gt-1hq2OV1RisCUGMpWVsN7aR8ID0Y-U4WkUYhoZ7UqOrtMtDxMAOhAyMrXQouLFtTegDeRQTRkSXH0AtmSXmEBhGLq0RMoTooeDCKB8DbqJAuDoQ1DyCRjZZ43khuDEu5-n47-4L2OwMe91x967_cAJbXzGSU6gtX1NzRqhhief5YvkEaqK51Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=18th+International+Conference+on+Pattern+Recognition+%28ICPR%2706%29&rft.atitle=Unsupervised+Decomposition+of+Mixed+Pixels+Using+the+Maximum+Entropy+Principle&rft.au=Lidan+Miao&rft.au=Hairong+Qi&rft.au=Szu%2C+H.&rft.date=2006-01-01&rft.pub=IEEE&rft.isbn=9780769525211&rft.issn=1051-4651&rft.volume=1&rft.spage=1067&rft.epage=1070&rft_id=info:doi/10.1109%2FICPR.2006.1142&rft.externalDocID=1699073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-4651&client=summon