Unsupervised Decomposition of Mixed Pixels Using the Maximum Entropy Principle
Due to the wide existence of mixed pixels, the derivation of constituent components (endmembers) and their proportions (abundances) at subpixel scales has become an important research topic. In this paper, we propose a novel unsupervised decomposition method based on the classical maximum entropy pr...
Saved in:
Published in | 18th International Conference on Pattern Recognition (ICPR'06) Vol. 1; pp. 1067 - 1070 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2006
|
Subjects | |
Online Access | Get full text |
ISBN | 0769525210 9780769525211 |
ISSN | 1051-4651 |
DOI | 10.1109/ICPR.2006.1142 |
Cover
Abstract | Due to the wide existence of mixed pixels, the derivation of constituent components (endmembers) and their proportions (abundances) at subpixel scales has become an important research topic. In this paper, we propose a novel unsupervised decomposition method based on the classical maximum entropy principle, termed uMaxEnt. The algorithm integrates a global least square error-based endmember detection and a per-pixel maximum entropy learning to find the most possible proportions. We apply the proposed method to the subject of spectral unmixing. The experimental results obtained from both simulated and real hyper-spectral data demonstrate the effectiveness of the uMaxEnt method |
---|---|
AbstractList | Due to the wide existence of mixed pixels, the derivation of constituent components (endmembers) and their proportions (abundances) at subpixel scales has become an important research topic. In this paper, we propose a novel unsupervised decomposition method based on the classical maximum entropy principle, termed uMaxEnt. The algorithm integrates a global least square error-based endmember detection and a per-pixel maximum entropy learning to find the most possible proportions. We apply the proposed method to the subject of spectral unmixing. The experimental results obtained from both simulated and real hyper-spectral data demonstrate the effectiveness of the uMaxEnt method |
Author | Szu, H. Hairong Qi Lidan Miao |
Author_xml | – sequence: 1 surname: Lidan Miao fullname: Lidan Miao organization: Tennessee Univ., Knoxville, TN – sequence: 2 surname: Hairong Qi fullname: Hairong Qi organization: Tennessee Univ., Knoxville, TN – sequence: 3 givenname: H. surname: Szu fullname: Szu, H. |
BookMark | eNotjMFOwzAQRC1RJNrSKxcu_oGU9TpO4iMKpVRqoUL0XNnJBowSJ4pT1P49kWAO8zTvMDM28a0nxu4ELIUA_bDJ9-9LBEjGGeMVm0GaaIUKBUzYVIASUZwoccMWIXzDmFipGPWUvR58OHXU_7hAJX-iom26NrjBtZ63Fd-586j3Y9eBH4Lzn3z4Ir4zZ9ecGr7yQ992F77vnS9cV9Mtu65MHWjxzzk7PK8-8pdo-7be5I_byIlUDREBVmAzgSqtjBClKazWJBNVWjQlSm1tBlmsMgJT6lgSQJkhWllUWqJFOWf3f7-OiI5d7xrTX44i0RpSKX8BPDxQJw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICPR.2006.1142 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EndPage | 1070 |
ExternalDocumentID | 1699073 |
Genre | orig-research |
GroupedDBID | 29J 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-e02f0b81257fa11dacb99e365db2ad239bb808458e0ad943e00d822b3cf932b23 |
IEDL.DBID | RIE |
ISBN | 0769525210 9780769525211 |
ISSN | 1051-4651 |
IngestDate | Wed Aug 27 01:40:48 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-e02f0b81257fa11dacb99e365db2ad239bb808458e0ad943e00d822b3cf932b23 |
PageCount | 4 |
ParticipantIDs | ieee_primary_1699073 |
PublicationCentury | 2000 |
PublicationDate | 20060000 |
PublicationDateYYYYMMDD | 2006-01-01 |
PublicationDate_xml | – year: 2006 text: 20060000 |
PublicationDecade | 2000 |
PublicationTitle | 18th International Conference on Pattern Recognition (ICPR'06) |
PublicationTitleAbbrev | ICPR |
PublicationYear | 2006 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000455429 ssj0020358 |
Score | 1.6322105 |
Snippet | Due to the wide existence of mixed pixels, the derivation of constituent components (endmembers) and their proportions (abundances) at subpixel scales has... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1067 |
SubjectTerms | Area measurement Entropy Hyperspectral imaging Hyperspectral sensors Image analysis Least squares methods Matrix decomposition Pixel Remote sensing Spatial resolution |
Title | Unsupervised Decomposition of Mixed Pixels Using the Maximum Entropy Principle |
URI | https://ieeexplore.ieee.org/document/1699073 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ak15QwPg7PXh0sK3ttp4RgiYQYiThRvrWLiHKILIl6F_v2w-GGg9elrWXbk3b973X732PkDsJnuKOAgv8ACwe4pYKPC6tyBfK8Q3XbpirfU680Yw_zcW8Ru6rXBhjTE4-M93sNb_L1-swzUJlPcfDs9NndVL3fVnkalXxFIQmWemlytmymSjS4AT6SJ5wCpddChftVan1VLWdUs3RsWXvsT99Lu4osizTHzVXcpMzbJLx_mMLpslrN02gG37-0nH879-ckM4huY9OK7N1SmombpHmvroDLTd7ixx_kypsk8ks3qab7GDZGk0fTEZFL_ledB3R8XKH3VN8vm1pTkOgiCzpWO2Wq3RFBxkffvOB45ah_Q6ZDQcv_ZFV1mKwlggwEsvYbmQDogHhR8pxtApBSsM8ocFV2mUSILADLgJjKy05M7atEXsACyNEiOCyM9KI17E5JxRCF1cImkHwgDNulA8BM2HAXR1wbF6QdjZZi00ht7Eo5-ny7-4rcnSIilyTRvKemhvECQnc5gvkC55TtoQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYAFaEG88cBIShLbecylqEBbVaiV2Cpf7EgVNK1oIwG_nsuj4SEGlij24sSyfd-dv_sO4DJETwlHoYV-gJaIaEsFngit2JfK8Y3QbpSrffa9zkjcP8mnNbiqcmGMMTn5zDSz1_wuX8-iNAuVXTsenZ0-X4cNSV6FX2RrVREVAidZ8aXK3bK5LBLhJHlJnnQKpz2ULlmsUu2pajulnqNjh9d3rcFjcUuR5Zn-qLqSG53bHeitPrfgmjw30yU2o49fSo7__Z9d2P9K72ODynDtwZpJ6rCzqu_Ayu1eh-1vYoUN6I-SRTrPjpaF0ezGZGT0kvHFZjHrTd6oe0DPlwXLiQiMsCXrqbfJNJ2ydsaIn7_TuGVwfx9Gt-1hq2OV1RisCUGMpWVsN7aR8ID0Y-U4WkUYhoZ7UqOrtMtDxMAOhAyMrXQouLFtTegDeRQTRkSXH0AtmSXmEBhGLq0RMoTooeDCKB8DbqJAuDoQ1DyCRjZZ43khuDEu5-n47-4L2OwMe91x967_cAJbXzGSU6gtX1NzRqhhief5YvkEaqK51Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=18th+International+Conference+on+Pattern+Recognition+%28ICPR%2706%29&rft.atitle=Unsupervised+Decomposition+of+Mixed+Pixels+Using+the+Maximum+Entropy+Principle&rft.au=Lidan+Miao&rft.au=Hairong+Qi&rft.au=Szu%2C+H.&rft.date=2006-01-01&rft.pub=IEEE&rft.isbn=9780769525211&rft.issn=1051-4651&rft.volume=1&rft.spage=1067&rft.epage=1070&rft_id=info:doi/10.1109%2FICPR.2006.1142&rft.externalDocID=1699073 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-4651&client=summon |