Collision-free trajectory planning in human-robot interaction through hand movement prediction from vision

We present a framework from vision based hand movement prediction in a real-world human-robot collaborative scenario for safety guarantee. We first propose a perception submodule that takes in visual data solely and predicts human collaborator's hand movement. Then a robot trajectory adaptive p...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids) pp. 305 - 310
Main Authors Yiwei Wang, Xin Ye, Yezhou Yang, Wenlong Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2017
Subjects
Online AccessGet full text
ISSN2164-0580
DOI10.1109/HUMANOIDS.2017.8246890

Cover

Abstract We present a framework from vision based hand movement prediction in a real-world human-robot collaborative scenario for safety guarantee. We first propose a perception submodule that takes in visual data solely and predicts human collaborator's hand movement. Then a robot trajectory adaptive planning submodule is developed that takes the noisy movement prediction signal into consideration for optimization. To validate the proposed systems, we first collect a new human manipulation dataset that can supplement the previous publicly available dataset with motion capture data to serve as the ground truth of hand location. We then integrate the algorithm with a six degree-of-freedom robot manipulator that can collaborate with human workers on a set of trained manipulation actions, and it is shown that such a robot system outperforms the one without movement prediction in terms of collision avoidance. We verify the effectiveness of the proposed motion prediction and robot trajectory planning approaches in both simulated and physical experiments. To the best of the authors' knowledge, it is the first time that a deep model based movement prediction system is utilized and is proven effective in human-robot collaboration scenario for enhanced safety.
AbstractList We present a framework from vision based hand movement prediction in a real-world human-robot collaborative scenario for safety guarantee. We first propose a perception submodule that takes in visual data solely and predicts human collaborator's hand movement. Then a robot trajectory adaptive planning submodule is developed that takes the noisy movement prediction signal into consideration for optimization. To validate the proposed systems, we first collect a new human manipulation dataset that can supplement the previous publicly available dataset with motion capture data to serve as the ground truth of hand location. We then integrate the algorithm with a six degree-of-freedom robot manipulator that can collaborate with human workers on a set of trained manipulation actions, and it is shown that such a robot system outperforms the one without movement prediction in terms of collision avoidance. We verify the effectiveness of the proposed motion prediction and robot trajectory planning approaches in both simulated and physical experiments. To the best of the authors' knowledge, it is the first time that a deep model based movement prediction system is utilized and is proven effective in human-robot collaboration scenario for enhanced safety.
Author Yiwei Wang
Xin Ye
Yezhou Yang
Wenlong Zhang
Author_xml – sequence: 1
  surname: Yiwei Wang
  fullname: Yiwei Wang
  email: yiwei.wang.3@asu.edu
  organization: Polytech. Sch., Arizona State Univ., Mesa, AZ, USA
– sequence: 2
  surname: Xin Ye
  fullname: Xin Ye
  email: xinye1@asu.edu
  organization: Sch. of Comput., Arizona State Univ., Tempe, AZ, USA
– sequence: 3
  surname: Yezhou Yang
  fullname: Yezhou Yang
  email: yz.yang@asu.edu
  organization: Sch. of Comput., Arizona State Univ., Tempe, AZ, USA
– sequence: 4
  surname: Wenlong Zhang
  fullname: Wenlong Zhang
  email: wenlong.zhang@asu.edu
  organization: Polytech. Sch., Arizona State Univ., Mesa, AZ, USA
BookMark eNotUN1OwjAYrUYTEXkCE9MXGLZd17WXBEVIUC6Ua9KtX1nJ1pKukPD2onB1cpLzk3Me0Z0PHhB6oWRMKVGv8_Xn5Gu1ePseM0LLsWRcSEVu0EiVkha5FFyUUtyiAaOCZ6SQ5AGN-n5HCMmplIqJAdpNQ9u63gWf2QiAU9Q7qFOIJ7xvtffOb7HzuDl02mcxVCGdaYKo63T24NTEcNg2uNHe4C4coQOf8D6CcReBjaHDx_-CJ3RvddvD6IpDtJ69_0zn2XL1sZhOlpmjZZEyA7WpTK2VqA0zVucFL0FaLpXSoLgQQjPLbE1NLQxT5yMqraHkf-N5Xol8iJ4vuQ4ANvvoOh1Pm-s7-S-7gl-E
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HUMANOIDS.2017.8246890
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538646786
1538646781
EISSN 2164-0580
EndPage 310
ExternalDocumentID 8246890
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-decdbdca96cd2dfa3547e8f4899ae94666a2f2fc1dc6d29109baae74468943b63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:45:28 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-decdbdca96cd2dfa3547e8f4899ae94666a2f2fc1dc6d29109baae74468943b63
PageCount 6
ParticipantIDs ieee_primary_8246890
PublicationCentury 2000
PublicationDate 2017-Nov.
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov.
PublicationDecade 2010
PublicationTitle 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)
PublicationTitleAbbrev HUMANOIDS
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188926
ssj0001968483
Score 1.8290575
Snippet We present a framework from vision based hand movement prediction in a real-world human-robot collaborative scenario for safety guarantee. We first propose a...
SourceID ieee
SourceType Publisher
StartPage 305
SubjectTerms Collision avoidance
Planning
Predictive models
Robots
Safety
Trajectory
Visualization
Title Collision-free trajectory planning in human-robot interaction through hand movement prediction from vision
URI https://ieeexplore.ieee.org/document/8246890
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB1qV7rx0YpvZuHSSZvJzSSzFLVUoVXQQndlntCKSQnpQr_ezCS2Ki7cZUII84J758w95yB0qankoZCWgI6AVBEvIimXmgCIiCYhhMqzXEdjNpzAwzSettDVmgtjjPHFZyZwj_4uX-dq5aCyXkqBpbw6oG8lCa-5Whs8hbMUmlDp2tVeTTllDSk47PPecDK6Hj_e3z67gq4kaH72w1XFB5XBLhp9daeuJXkNVqUM1Mcvpcb_9ncPdTf0Pfy0Dkz7qGWyA7TzTXmwgxYOMPC0cmILY3BZiIXH79_xsrExwvMMewc_UuQyL7ETlihqGgRu3H2wg93xW-41x0u8LNytj__AsVZwzVvvosng7uVmSBrbBTKvcomSaKO01EpwpjTVVkQxJCa1UJ3MhHFy9ExQS60KtWKaVukGl0KYBNxYIZIsOkTtLM_MEcLULQpYGSsaguJamj5YZRPgikqw7Bh13KzNlrWyxqyZsJO_X5-ibbdyNRPwDLXLYmXOq5SglBd-L3wCpi64cA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0QXKgbH2B8OwuXDtDpZdpZGpWAApoICTsyzwSMlDRloV9vZ1rxERfu2qZppjOT3HvP3HMOQpeaSh4IaQnoEEge8UISc6kJgAhpFECgPMt1MGTdMdxP2pMKulpzYYwxvvnMNNylP8vXiVo5qKwZU2Axzwv0jXZeVUQFW-sLUeEshjJYuvt8t8acspIWHLR4szseXA8fe7fPrqUrapSf--Gr4sNKZwcNPgdUdJO8NFaZbKj3X1qN_x3xLqp_Efjw0zo07aGKWeyj7W_agzU0d5CBJ5YTmxqDs1TMPYL_hpelkRGeLbD38CNpIpMMO2mJtCBC4NLfBzvgHb8mXnU8w8vUnfv4FxxvBRfM9Toad-5GN11SGi-QWZ5NZEQbpaVWgjOlqbYibENkYgt5bSaME6RnglpqVaAV0zRPOLgUwkTg_hVCycIDVF0kC3OIMHWLAla2FQ1AcS1NC6yyEXBFJVh2hGpu1qbLQltjWk7Y8d-PL9BmdzToT_u94cMJ2nKrWPACT1E1S1fmLE8QMnnu98UHgBa7wQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE-RAS+17th+International+Conference+on+Humanoid+Robotics+%28Humanoids%29&rft.atitle=Collision-free+trajectory+planning+in+human-robot+interaction+through+hand+movement+prediction+from+vision&rft.au=Yiwei+Wang&rft.au=Xin+Ye&rft.au=Yezhou+Yang&rft.au=Wenlong+Zhang&rft.date=2017-11-01&rft.pub=IEEE&rft.eissn=2164-0580&rft.spage=305&rft.epage=310&rft_id=info:doi/10.1109%2FHUMANOIDS.2017.8246890&rft.externalDocID=8246890