Role-based profile analysis for scalable and accurate insider-anomaly detection

Sensitive organizations such as the intelligence community (IC) have faced increasing challenges of insider threats because insiders are not always friends, but can be significant threats to the corporate assets. Statistically, it is accepted that the cost of insider threats exceeds that of outsider...

Full description

Saved in:
Bibliographic Details
Published in2006 IEEE International Performance Computing and Communications Conference pp. 7 pp. - 470
Main Authors Park, J.S., Giordano, J.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2006
Subjects
Online AccessGet full text
ISBN1424401984
9781424401987
ISSN1097-2641
DOI10.1109/.2006.1629440

Cover

Abstract Sensitive organizations such as the intelligence community (IC) have faced increasing challenges of insider threats because insiders are not always friends, but can be significant threats to the corporate assets. Statistically, it is accepted that the cost of insider threats exceeds that of outsider threats. Many security technologies have been invented to prevent threats from outsiders, but they have limited use in countering insiders' abnormal behaviors. Furthermore, individual-based monitoring mechanisms are not scalable for a large enterprise system. Therefore, in this paper, we introduce a scalable and accurate approach with the role-based profile analysis for countering insider threats, focusing on the relationship between insiders and their systems to detect anomalies. Also, we describe our simulation with synthetic data sets of baseline and threat scenarios
AbstractList Sensitive organizations such as the intelligence community (IC) have faced increasing challenges of insider threats because insiders are not always friends, but can be significant threats to the corporate assets. Statistically, it is accepted that the cost of insider threats exceeds that of outsider threats. Many security technologies have been invented to prevent threats from outsiders, but they have limited use in countering insiders' abnormal behaviors. Furthermore, individual-based monitoring mechanisms are not scalable for a large enterprise system. Therefore, in this paper, we introduce a scalable and accurate approach with the role-based profile analysis for countering insider threats, focusing on the relationship between insiders and their systems to detect anomalies. Also, we describe our simulation with synthetic data sets of baseline and threat scenarios
Author Giordano, J.
Park, J.S.
Author_xml – sequence: 1
  givenname: J.S.
  surname: Park
  fullname: Park, J.S.
  organization: Sch. of Inf. Studies, Syracuse Univ., NY
– sequence: 2
  givenname: J.
  surname: Giordano
  fullname: Giordano, J.
BookMark eNotj01LAzEYhANWsFs9evKSP5A1n7vJUYpfUCiInsu7yRuIbDclWQ_99y7ay8wwPAxMQ1ZTnpCQe8FbIbh7bCXnXSs66bTmV6QRWi5BOKtXZL0APZOdFjekqfWbc66s7Ndk_5FHZANUDPRUckwjUphgPNdUacyFVg8jDH9toOD9T4EZaZpqClgYTPm4wDTgjH5Oebol1xHGincX35Cvl-fP7Rvb7V_ft087lkRvZhZCZ6T2xhvrouG9coaLKK2WgCgHtFLpRSNG3dmouI4gIrpg46DCILjakIf_3YSIh1NJRyjnw-W8-gU4hE-i
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/.2006.1629440
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 470
ExternalDocumentID 1629440
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-dd6524c5c589f50739501f2842aee2be8234be8fef468f304fa1fe9d8fb3db103
IEDL.DBID RIE
ISBN 1424401984
9781424401987
ISSN 1097-2641
IngestDate Wed Aug 27 02:23:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-dd6524c5c589f50739501f2842aee2be8234be8fef468f304fa1fe9d8fb3db103
ParticipantIDs ieee_primary_1629440
PublicationCentury 2000
PublicationDate 20060000
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – year: 2006
  text: 20060000
PublicationDecade 2000
PublicationTitle 2006 IEEE International Performance Computing and Communications Conference
PublicationTitleAbbrev PCCC
PublicationYear 2006
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003827
ssj0001967435
Score 1.4506785
Snippet Sensitive organizations such as the intelligence community (IC) have faced increasing challenges of insider threats because insiders are not always friends,...
SourceID ieee
SourceType Publisher
StartPage 7 pp.
SubjectTerms Access control
Computer crime
Costs
Face detection
Information analysis
Information security
Intrusion detection
Laboratories
Monitoring
Permission
Title Role-based profile analysis for scalable and accurate insider-anomaly detection
URI https://ieeexplore.ieee.org/document/1629440
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJ71Mt4nf5ODRbG2TpulZHEOYijjYbeQThtqKthd_vW_6sap48FLSEGibJrxP3o_nQegyBQiShFoS2EzeW6UcSXnMSAJQX1AqAXJ418Dijs-X7HYVr3roalsLY62tks_sxDerWL7JdeldZdOQRyljcEDfSQSva7U6f0rq0-k76EtFJdfqA6w-iytsi7pgoGAt11Nzn3Tkm9M6PtE86YfkSmVxZgO0aN-1TjR5npSFmujPXzSO__2YfTTuavvww9ZqHaCezYZo0Io74GavD9HeN6bCEbp_zF8s8SbP4EbmG8uGzwQD7sUf8K99FRb0Giy1Lj0FBd7UaqBEZvkrDMbGFlXqVzZGy9nN0_WcNFoMZAMAoyDG8DhiOtaxSF1chfeC0IFti6S1kbIiogyuzjrGhaMBczJ0NjXCKWpUGNBD1M_yzB4hDGcYJkUklZQc4JsR3ASKUyMYdToy_BiN_Gyt32q6jXUzUSd_d5-i3c4rcob6xXtpzwEnFOqiWiBf9l-1Dw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4IHtQLChjf9uDRAlsfdGcjQQU0BhJupM-EqJvR7eJfb7sHU-PBy9I1TbZ1bX5ff4_vA-AychBkGCiB3Gby3ippUcQoQUMH9TnGwkEO7xqYzth4Qe6WdNkAV5taGGNMnnxmer6Zx_J1ojLvKusHLIwIcQf0LUoIoUW1Vu1RiXxCfQ1-Mc8FW32I1edxBVVZlxvIScX2VN4Pa_rNfhGhKJ_1Q3QltzmjFphWb1ukmjz3slT21OcvIsf_fs4e6NbVffBxY7f2QcPEbdCq5B1gudvbYPcbV2EHPDwlLwZ5o6dhKfQNRcloAh3yhR_ub_s6LNeroVAq8yQUcF3ogSIRJ69uMNQmzZO_4i5YjG7m12NUqjGgtYMYKdKa0ZAoqiiPLM0DfIPAOusWCmNCaXiIibtaYwnjFg-IFYE1keZWYi2DAT4AzTiJzSGA7hRDBA-FFII5AKc50wPJsOYEWxVqdgQ6frZWbwXhxqqcqOO_uy_A9ng-nawmt7P7E7BT-0hOQTN9z8yZQw2pPM8Xyxelxbhc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2006+IEEE+International+Performance+Computing+and+Communications+Conference&rft.atitle=Role-based+profile+analysis+for+scalable+and+accurate+insider-anomaly+detection&rft.au=Park%2C+J.S.&rft.au=Giordano%2C+J.&rft.date=2006-01-01&rft.pub=IEEE&rft.isbn=9781424401987&rft.issn=1097-2641&rft.spage=7+pp.&rft.epage=470&rft_id=info:doi/10.1109%2F.2006.1629440&rft.externalDocID=1629440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2641&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2641&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2641&client=summon