Recognition system for nasal, lateral and trill arabic phonemes using neural networks

There has been limited study and research in Arabic phoneme among Malaysians, hence making references to the work and research difficult. Although there have been significant acoustic and phonetic studies on languages such as English, French and Mandarin, to date there are no guidelines or significa...

Full description

Saved in:
Bibliographic Details
Published in2012 IEEE Student Conference on Research and Development (SCOReD) pp. 229 - 234
Main Authors Abdul-Kadir, Nurul Ashikin, Sudirman, Rubita, Mahmood, Nasrul Humaimi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2012
Subjects
Online AccessGet full text
ISBN9781467351584
146735158X
DOI10.1109/SCOReD.2012.6518644

Cover

Abstract There has been limited study and research in Arabic phoneme among Malaysians, hence making references to the work and research difficult. Although there have been significant acoustic and phonetic studies on languages such as English, French and Mandarin, to date there are no guidelines or significant findings on Malay language. In this paper, we monitored and analyzed the performance of multi-layer feed-forward with back-propagation (MLFFBP) and cascade-forward (CF) networks on our phoneme recognition system of Standard Arabic (SA). This study focused on Malaysian children as test subjects. Focused on four chosen phonemes from SA, which composed of nasal, lateral and trill behaviors, i.e. tabulated at four different articulation places. Highest training recognition rate for multi-layer and cascade-layer network are 98.8 % and 95.2 % respectively, while the highest testing recognition rate achieved for both networks is 92.9 %. 10-fold cross validation was used to evaluate system performance. The selected network is cascade layer with 40 and 10 hidden neurons in first hidden layer and second hidden layer respectively. The chosen network was used in the GUI designed for developing recognition system with user feedback.
AbstractList There has been limited study and research in Arabic phoneme among Malaysians, hence making references to the work and research difficult. Although there have been significant acoustic and phonetic studies on languages such as English, French and Mandarin, to date there are no guidelines or significant findings on Malay language. In this paper, we monitored and analyzed the performance of multi-layer feed-forward with back-propagation (MLFFBP) and cascade-forward (CF) networks on our phoneme recognition system of Standard Arabic (SA). This study focused on Malaysian children as test subjects. Focused on four chosen phonemes from SA, which composed of nasal, lateral and trill behaviors, i.e. tabulated at four different articulation places. Highest training recognition rate for multi-layer and cascade-layer network are 98.8 % and 95.2 % respectively, while the highest testing recognition rate achieved for both networks is 92.9 %. 10-fold cross validation was used to evaluate system performance. The selected network is cascade layer with 40 and 10 hidden neurons in first hidden layer and second hidden layer respectively. The chosen network was used in the GUI designed for developing recognition system with user feedback.
Author Mahmood, Nasrul Humaimi
Abdul-Kadir, Nurul Ashikin
Sudirman, Rubita
Author_xml – sequence: 1
  givenname: Nurul Ashikin
  surname: Abdul-Kadir
  fullname: Abdul-Kadir, Nurul Ashikin
  email: kinkadir@gmail.com
  organization: Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
– sequence: 2
  givenname: Rubita
  surname: Sudirman
  fullname: Sudirman, Rubita
  email: rubita@fke.utm.my
  organization: Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
– sequence: 3
  givenname: Nasrul Humaimi
  surname: Mahmood
  fullname: Mahmood, Nasrul Humaimi
  email: nasrul@fke.utm.my
  organization: Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
BookMark eNotUFFLwzAYjKigm_0Fe8kPsDVJ0yR9lOpUGAymex5Z8mVG23QkHbJ_b8U-3R3cHcfN0FXoAyC0oKSglNQP7816A08FI5QVoqJKcH6BZpQLWVZUEHqJslqqSVeK36AspS9CyJgWNa9u0XYDpj8EP_g-4HROA3TY9REHnXR7j1s9QNQt1sHiIfp2ZFHvvcHHz3FJBwmfkg8HHOD0Zwsw_PTxO92ha6fbBNmEc7RdPn80r_lq_fLWPK5yT2U15FYAJxKAEUWMdGAt49Y4DkyJUu6FlbVwzBhwNVPSaWKtYNpIpYwDBraco8V_rweA3TH6Tsfzbnqi_AWyMFZ1
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCOReD.2012.6518644
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467351601
1467351598
9781467351607
9781467351591
EndPage 234
ExternalDocumentID 6518644
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-d6e407ee2080c7fedd24dcf4e28637b6d796f2ccef9287fa0dd62ac788cfe2ed3
IEDL.DBID RIE
ISBN 9781467351584
146735158X
IngestDate Wed Sep 03 07:09:51 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d6e407ee2080c7fedd24dcf4e28637b6d796f2ccef9287fa0dd62ac788cfe2ed3
PageCount 6
ParticipantIDs ieee_primary_6518644
PublicationCentury 2000
PublicationDate 2012-Dec.
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-Dec.
PublicationDecade 2010
PublicationTitle 2012 IEEE Student Conference on Research and Development (SCOReD)
PublicationTitleAbbrev SCOReD
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106945
Score 1.5095135
Snippet There has been limited study and research in Arabic phoneme among Malaysians, hence making references to the work and research difficult. Although there have...
SourceID ieee
SourceType Publisher
StartPage 229
SubjectTerms Accuracy
back-propagation
Biological neural networks
cascade-forward network
k-fold cross validation
lateral
MATLAB
Mean square error methods
multi-layer network
nasal
Neurons
Nose
Research and development
Self-organizing feature maps
Software
Training
trill
Title Recognition system for nasal, lateral and trill arabic phonemes using neural networks
URI https://ieeexplore.ieee.org/document/6518644
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjyywdqu7c4oISaoQUm4kf54NUScBsbFv952GxCNB2_tsqxN3-F7r_u-7yF0Q7lJWSJUlNHERiwFGkltIQJHNCeaEih7Ro4f-GjK7mfprIG6Oy0MAJTkM4jDsPyXbz_MJlyV9XiaSI_fTdQUkldarf19ShIknGmp3eKCepiWs62lUz1ntetQ0s96z4PHCdwGaheJ68_-6K9SwsvwEI23G6tYJW_xptCx-frl2fjfnR-hzl7Ih592EHWMGpC30XSyJQ195LhycsY-dcW5WqtlFy9VECUvscotLlaLpR-tlF4YHFjs8A5rHLjyrzg4YfrX8opHvu6g6fDuZTCK6u4K0cKnDEVkOfhiDoD4nNEIB9YSZo1jPjicCs2tyLgjxoDLfFXlVN9aTpTxJbNxQMDSE9TK_bqnCDuRBF-3zEiumexnkmliFRVpqphUVJ-hdjiS-WdloDGvT-P878cX6CCEpeKMXKJWsdrAlUf-Ql-XIf8GmzCr3w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pSA8a3PXhkge1rd88oQQU0CAk30sesIa6LgeXir7fdXSQaD97apmmbzmFm2u_7BqEbKjRnfiC9iPrGYxyoFyoDHsRECaIogbxm5GAoehP2MOXTCmp8c2EAIAefQdM18798s9Br91TWEtwPrf_eQbucMcYLttb2RcV3JE6es7dEQK2jDqcbUaeyz0rdIb8dtV46TyO4deAu0iwX_lFhJXcw3QM02BytwJW8NdeZaurPX6qN_z37IapvqXz4-dtJHaEKpDU0GW1gQ4sUF1rO2AavOJUrmTRwIh0tOcEyNThbzhPbWko119jh2OEdVtih5V-x08K009ICSb6qo0n3btzpeWV9BW9ug4bMMwJsOgdAbNSogxiMIczomFnzCBooYYJIxERriCObV8WybYwgUtukWcdAwNBjVE3tvicIx4HvlN0iHQrFwnYUMkWMpAHnkoWSqlNUc1cy-ygkNGblbZz9PXyN9nrjQX_Wvx8-nqN9Z6ICQXKBqtlyDZc2DsjUVW7-L80Fryw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+Student+Conference+on+Research+and+Development+%28SCOReD%29&rft.atitle=Recognition+system+for+nasal%2C+lateral+and+trill+arabic+phonemes+using+neural+networks&rft.au=Abdul-Kadir%2C+Nurul+Ashikin&rft.au=Sudirman%2C+Rubita&rft.au=Mahmood%2C+Nasrul+Humaimi&rft.date=2012-12-01&rft.pub=IEEE&rft.isbn=9781467351584&rft.spage=229&rft.epage=234&rft_id=info:doi/10.1109%2FSCOReD.2012.6518644&rft.externalDocID=6518644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467351584/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467351584/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467351584/sc.gif&client=summon&freeimage=true