Vehicle boundary improvement and passing vehicle detection in driver assistance by flow distribution

Research in advanced driver assistance system (ADAS) is an important step towards achieving the goal of autonomous intelligent vehicle. Vehicle detection and its distance estimation is an important solution of ADAS for forward collision warning applications. Partial occlusions of passing vehicles ma...

Full description

Saved in:
Bibliographic Details
Published in2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA) pp. 1 - 6
Main Authors Das, Apurba, Ruppin, K, Dave, Palak, Pv, Sharfudheen
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2017
Subjects
Online AccessGet full text
ISSN2154-512X
DOI10.1109/IPTA.2017.8310126

Cover

Abstract Research in advanced driver assistance system (ADAS) is an important step towards achieving the goal of autonomous intelligent vehicle. Vehicle detection and its distance estimation is an important solution of ADAS for forward collision warning applications. Partial occlusions of passing vehicles makes their detections tedious yet the accuracy of vehicle detection in all its forms in the scene and their corresponding distance estimation is a vital factor to deploy the solution. A small deviation in detection and distance accuracy could end up in a greater mishap in ADAS and AV (Autonomous Vehicle). The proposed framework addresses the aforementioned problems of detection of passing vehicles and perfecting distance measurement by accurate lower bound estimation through Inter and Intra-Frame Flow Correspondence (I 2 F 2 C). The proposed generic framework of 1 2 F 2 C could be employed as a plug-in for the existing machine learning (ML) [1]/ deep learning (DL) [2] based algorithms for improving accuracy of distance estimation of vehicles and also improve accuracy and performance of passing vehicle detection with a detailed mathematical model of motion confidence.
AbstractList Research in advanced driver assistance system (ADAS) is an important step towards achieving the goal of autonomous intelligent vehicle. Vehicle detection and its distance estimation is an important solution of ADAS for forward collision warning applications. Partial occlusions of passing vehicles makes their detections tedious yet the accuracy of vehicle detection in all its forms in the scene and their corresponding distance estimation is a vital factor to deploy the solution. A small deviation in detection and distance accuracy could end up in a greater mishap in ADAS and AV (Autonomous Vehicle). The proposed framework addresses the aforementioned problems of detection of passing vehicles and perfecting distance measurement by accurate lower bound estimation through Inter and Intra-Frame Flow Correspondence (I 2 F 2 C). The proposed generic framework of 1 2 F 2 C could be employed as a plug-in for the existing machine learning (ML) [1]/ deep learning (DL) [2] based algorithms for improving accuracy of distance estimation of vehicles and also improve accuracy and performance of passing vehicle detection with a detailed mathematical model of motion confidence.
Author Pv, Sharfudheen
Dave, Palak
Das, Apurba
Ruppin, K
Author_xml – sequence: 1
  givenname: Apurba
  surname: Das
  fullname: Das, Apurba
  organization: Embedded Innovation Laboratory, Tata Consultancy Services, Bangalore, India
– sequence: 2
  givenname: K
  surname: Ruppin
  fullname: Ruppin, K
  organization: Embedded Innovation Laboratory, Tata Consultancy Services, Bangalore, India
– sequence: 3
  givenname: Palak
  surname: Dave
  fullname: Dave, Palak
  organization: University of South Florida, USA
– sequence: 4
  givenname: Sharfudheen
  surname: Pv
  fullname: Pv, Sharfudheen
  organization: Embedded Innovation Laboratory, Tata Consultancy Services, Bangalore, India
BookMark eNotkN1KAzEUhKMo2NY-gHiTF9iak79NLkvxp1DQiyrelTTnrEbabNndVvr2brFzMzB8DMwM2VWuMzF2B2ICIPzD_G05nUgB5cQpECDtBRuCUc6C07K8ZAMJRhcG5OcNG7ftjxBCSuu19AOGH_Sd4ob4ut5nDM2Rp-2uqQ-0pdzxkJHvQtum_MUPZxCpo9ilOvOUOTbpQA0_IW0Xcux7jrza1L8c-6BJ6_2JvGXXVdi0ND77iL0_PS5nL8Xi9Xk-my6KBKXpCrTWGPDWq14YtSO59hZ0QGNNQBcwektRyaipqrysgpOoqXRIRlFZqRG7_-9NRLTaNWnbD1qdT1F_CgxaSA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPTA.2017.8310126
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès Toulouse INP et ENVT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1538618427
9781538618424
EISSN 2154-512X
EndPage 6
ExternalDocumentID 8310126
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-d665519693333dc48e2b9614ad565ad8adc96ec32c4eff92fa82d4e78de53e7f3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:56 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d665519693333dc48e2b9614ad565ad8adc96ec32c4eff92fa82d4e78de53e7f3
PageCount 6
ParticipantIDs ieee_primary_8310126
PublicationCentury 2000
PublicationDate 2017-Nov.
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov.
PublicationDecade 2010
PublicationTitle 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)
PublicationTitleAbbrev IPTA
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002269429
ssj0001286288
Score 1.6592165
Snippet Research in advanced driver assistance system (ADAS) is an important step towards achieving the goal of autonomous intelligent vehicle. Vehicle detection and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms ADAS (Advanced Driver Assistance System)
Advanced driver assistance systems
Automobiles
Autonomous vehicles
Cameras
CDF (Cumulative Distribution Function)
Estimation
Histograms
Inter and Intra Frame Flow Correspondence (I2F2C)
Vehicle detection
Title Vehicle boundary improvement and passing vehicle detection in driver assistance by flow distribution
URI https://ieeexplore.ieee.org/document/8310126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhJSp3UjxEhqoJU1KFF3SrHdxEVKEUlBZVfj-2Y8hADmZLo5Fi2o_t8vu8-Qs4SmRtpUh5xCRClYEyUWTcfCa2M6mohRO42isM7Ppikt9PetEbON1wYRPTJZxi7W3-WDwuzcqGyjhPF6jJeJ3UhecXV-hZPkU45d_PMHEWTqXCQ2b1QnZvR-NLlcok4tPNDUMX7k36TDD97UqWRPMarMovN-68ijf_t6jZpfzH36Gjjk3ZIDYtd0gxQk4Yf-aVF4B4f3IqhmZdVWq7p3EcXfLCQ6gLos0XVtgn6GgwBS5-1VdB5QWHp0jmoM3Ho0n40W9P8afFGwRXiDRpabTLpX4-vBlEQXIjmFkWUEXBuAZTiKrEXmFQiy5T13xos7NMgNRjF0STMpJjniuVaMkhRSMBegiJP9kijWBS4TyhaJGVnHxLkPWvRVRrdzs1aIlMZ1wek5QZt9lzV1JiF8Tr8-_UR2XITV3EAj0mjXK7wxIKBMjv1q-ADVFq14A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_Dohtu6rj0aIwEFwgEMN9L1vUWiGQSHBv96223ij3hwp2156Zq2y_v6-r73EXIRiEQLzbjDBYDDQGsnNm7eiZTU0lNRFCV2o9jr8_aI3Y3DcYVcrrkwiJgnn6Frb_OzfJjppQ2VNa0olufzDbIZMsbCgq31LaIirHbu-tm3JE1flkeZ3pVsdgbDa5vNFbllSz8kVXKP0qqR3mdfikSSJ3eZxa5-_1Wm8b-d3SGNL-4eHay90i6pYLpHaiXYpOWv_FIn8ICPds3QOBdWWqzoNI8v5OFCqlKgc4OrTRP0tTQEzPK8rZROUwoLm9BBrYnFl-aj8Yomz7M3CrYUb6mi1SCj1u3wpu2UkgvO1OCIzAHODYSSXAbmAs0E-rE0HlyBAX4KhAItOerA1wyTRPqJEj4wjARgGGCUBPukms5SPCAUDZYy8w8B8tBYeFKh3bsZS_RlzNUhqdtBm8yLqhqTcryO_n59Trbaw1530u3074_Jtp3EghF4QqrZYomnBhpk8Vm-Ij4ABd-5LQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Seventh+International+Conference+on+Image+Processing+Theory%2C+Tools+and+Applications+%28IPTA%29&rft.atitle=Vehicle+boundary+improvement+and+passing+vehicle+detection+in+driver+assistance+by+flow+distribution&rft.au=Das%2C+Apurba&rft.au=Ruppin%2C+K&rft.au=Dave%2C+Palak&rft.au=Pv%2C+Sharfudheen&rft.date=2017-11-01&rft.pub=IEEE&rft.eissn=2154-512X&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIPTA.2017.8310126&rft.externalDocID=8310126