Machine Learning Approaches to Choose Heroes in Dota 2

The winning in the multiplayer online game Dota 2 for teams is a sum of many factors. One of the most significant of them is the right choice of heroes for the team. It is possible to predict a match result based on the chosen heroes for both teams. This paper considers different approaches to predi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the XXth Conference of Open Innovations Association FRUCT pp. 345 - 350
Main Authors Porokhnenko, Iuliia, Polezhaev, Petr, Shukhman, Alexander
Format Conference Proceeding
LanguageEnglish
Published FRUCT 01.04.2019
Subjects
Online AccessGet full text
ISSN2305-7254
DOI10.23919/FRUCT.2019.8711985

Cover

Abstract The winning in the multiplayer online game Dota 2 for teams is a sum of many factors. One of the most significant of them is the right choice of heroes for the team. It is possible to predict a match result based on the chosen heroes for both teams. This paper considers different approaches to predicting results of a match using machine learning methods to solve the classification problem. The experimental comparison of predictive classification models was done, including the optimization of their hyperparameters. It showed that the best classification models are linear regression, linear support vector machine, as well as neural network with Softplus and Sigmoid activation functions. The fastest of them is the linear regression model, so it is best suited for practical implementation.
AbstractList The winning in the multiplayer online game Dota 2 for teams is a sum of many factors. One of the most significant of them is the right choice of heroes for the team. It is possible to predict a match result based on the chosen heroes for both teams. This paper considers different approaches to predicting results of a match using machine learning methods to solve the classification problem. The experimental comparison of predictive classification models was done, including the optimization of their hyperparameters. It showed that the best classification models are linear regression, linear support vector machine, as well as neural network with Softplus and Sigmoid activation functions. The fastest of them is the linear regression model, so it is best suited for practical implementation.
Author Shukhman, Alexander
Porokhnenko, Iuliia
Polezhaev, Petr
Author_xml – sequence: 1
  givenname: Iuliia
  surname: Porokhnenko
  fullname: Porokhnenko, Iuliia
  organization: Orenburg State University, Orenburg, Russian Federation
– sequence: 2
  givenname: Petr
  surname: Polezhaev
  fullname: Polezhaev, Petr
  organization: Orenburg State University, Orenburg, Russian Federation
– sequence: 3
  givenname: Alexander
  surname: Shukhman
  fullname: Shukhman, Alexander
  organization: Orenburg State University, Orenburg, Russian Federation
BookMark eNotj91Kw0AUhFdRsNY8QW_2BRL37Obsz2WJthUihdJel405sSu6G5Lc-PYG7MUw8A0MM4_sLqZIjK1AFFI5cM-bw6k6FlKAK6wBcBZvWOaMdSi11aisvmULqQTmRmL5wLJx_BJCSIvaObNg-t1_XEIkXpMfYoiffN33Q5ohjXxKvLqkNBLf0ZBmECJ_SZPn8ondd_57pOzqS3bavB6rXV7vt2_Vus4DGJzytmy0pU6SasUsABSiwaYzjfckgbSH1hM2IMk6pbF1vsR5p50Tb6xSS7b67w1EdO6H8OOH3_P1qfoDOGVINg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/FRUCT.2019.8711985
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9789526865386
9526865391
9526865383
9789526865393
EISSN 2305-7254
EndPage 350
ExternalDocumentID 8711985
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADBBV
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
IPNFZ
OCL
RIE
RIG
RIL
ID FETCH-LOGICAL-i175t-d4b68ef2e3d0e3d11500b5bf7baae21e6a1dae5b12e89365d9a452548e6aa7833
IEDL.DBID RIE
IngestDate Wed Aug 27 02:47:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d4b68ef2e3d0e3d11500b5bf7baae21e6a1dae5b12e89365d9a452548e6aa7833
PageCount 6
ParticipantIDs ieee_primary_8711985
PublicationCentury 2000
PublicationDate 2019-April
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-April
PublicationDecade 2010
PublicationTitle Proceedings of the XXth Conference of Open Innovations Association FRUCT
PublicationTitleAbbrev FRUCT
PublicationYear 2019
Publisher FRUCT
Publisher_xml – name: FRUCT
SSID ssj0002856997
Score 2.1454964
Snippet The winning in the multiplayer online game Dota 2 for teams is a sum of many factors. One of the most significant of them is the right choice of heroes for the...
SourceID ieee
SourceType Publisher
StartPage 345
SubjectTerms Classification algorithms
Games
Loss measurement
Machine learning
Machine learning algorithms
Training
Vegetation
Title Machine Learning Approaches to Choose Heroes in Dota 2
URI https://ieeexplore.ieee.org/document/8711985
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA3bTp5UNvGbHDyabc1Xk6NMxxAmIhvsNvLxqw6hla277K83aetE8eAhENKUJE3gvSbv94LQTeqYY6AsMYH-Eu49J6FmRrLMCZEaL20VSDt9kpM5f1yIRQvd7mNhAKASn0E_ZquzfF-4bdwqGwRyH_6RRRu1UyXrWK39fgpVQmqd1sZClOlED8Yv89EsqrfCcqjf_HGFSoUg40M0_Wq7Fo6897el7bvdL1vG_3buCPW-Y_Xw8x6FjlEL8i6S00ojCbixT33Fd413OGxwWeDRW1FsAE9gXYSCVY7vi9Jg2kPz8cNsNCHNDQlkFWC_JJ5bqSCjwPwwpMjuhlbYLLXGAE1AmsQbEDahEHiJFF6beI7JVXhiUsXYCerkRQ6nCHstM59SCVlAfDfkhtPADL1hylBndXKGunHMy4_aBGPZDPf87-ILdBC_ey1xuUSdcr2Fq4Depb2upu0T4WeaSQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP2Y86AnlU38bQ4e7bamSdoeZTqqrkNkg91G0nzVIbSytRf_epO2ThQPHgohTWhCCu8l3_teAK78xEs8DJQjDf11mNbMMS1TJ00Tzn2phaoSaeOJiGbsYc7nLbje5MIgYiU-w54tVrF8nSelPSrrG3Jv9sh8C7Y5Y4zX2VqbExUacBGGfm0tRL3QDfuj59lwavVb5oeo-_64RKXCkNEexF9fr6Ujb72yUL3k45cx43-Htw_d72w98rTBoQNoYdYBEVcqSSSNgeoLuWncw3FNipwMX_N8jSTCVW4qlhm5zQtJaBdmo7vpMHKaOxKcpQH-wtFMiQBTip4emMfyu4HiKvWVlEhdFNLVErlyKRpmIrgOpY1kssC8kX7geYfQzvIMj4DoUKTapwJTg_nJgElGDTfU0gskTVToHkPHznnxXttgLJrpnvxdfQk70TQeL8b3k8dT2LVrUAtezqBdrEo8N1heqItqCT8BKoidlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+XXth+Conference+of+Open+Innovations+Association+FRUCT&rft.atitle=Machine+Learning+Approaches+to+Choose+Heroes+in+Dota+2&rft.au=Porokhnenko%2C+Iuliia&rft.au=Polezhaev%2C+Petr&rft.au=Shukhman%2C+Alexander&rft.date=2019-04-01&rft.pub=FRUCT&rft.eissn=2305-7254&rft.spage=345&rft.epage=350&rft_id=info:doi/10.23919%2FFRUCT.2019.8711985&rft.externalDocID=8711985